AIM/Material Model *Features, model and necessary data*

Toshihiko MASUI and Ashish RANA National Institute for Environmental Studies

Session 4: Asia-Pacific Integrated Model (AIM): Introduction to Component Models (Cont.)

APEIS Capacity Building Workshop on Integrated Environment Assessment in the Asia Pacific Region

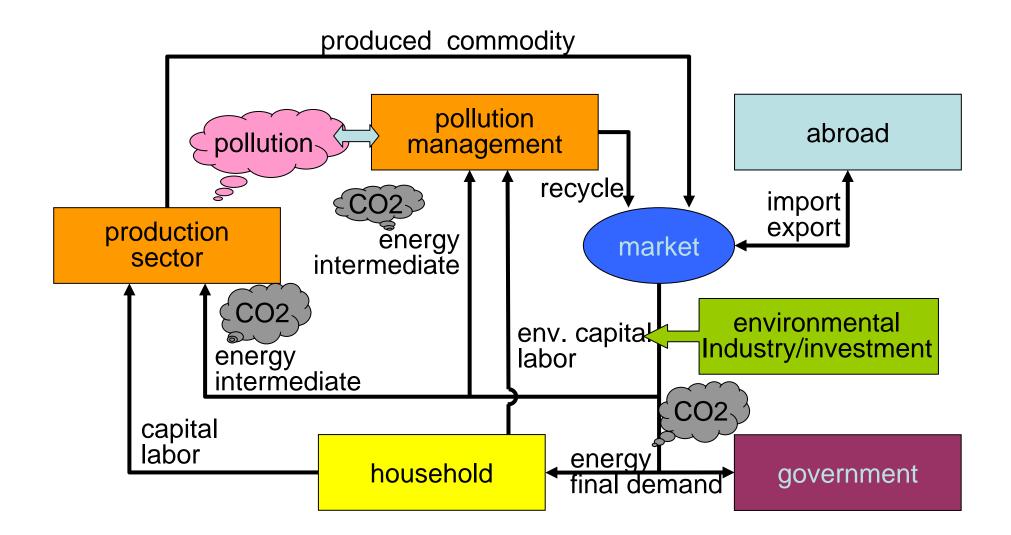
> October 24-26, 2002 Hotel Grand Inter-Continental, New Delhi, India

Coverage in this workshop

- Summary (This session) For understanding AIM/Material model
 - What is AIM/Material model?
 - Model formulation
 - Necessary data for simulation
 - Future scenario
- Training (Session 5)
 - Operation of AIM/Material model
- Application (Session 7)

– Application of AIM/Material model to India and Japan

Features of AIM/Material Model


- Top-down model
- Domestic model
- Computable General Equilibrium model
- Recursive dynamics
- Treatment of pollution generation, management and discharge
- Activity of environmental industry and environmental investment
- Consistent material balance
- Link with technology model such as AIM/Emission model for technology progress

We have been developing AIM/Material for both CO2 and other environmental problems.

Structure of AIM/Material Model

- Production sector
 - Input: capital, labor, energy, other intermediate input, pollution (inputs for pollution management)
 - Output: commodity
- Household
 - Endowment: capital, labor
 - Demand: household final consumption, investment
- Government
 - Revenue: tax including environmental tax
 - Demand: government final consumption, government investment

Structure of AIM/Material Model

Procedure of model analysis

- 1. Formulation of model
- 2. Preparation of dataset in initial year, and calibration
- 3. Preparation of future scenarios
- 4. Simulation
 - i. Reference case
 - ii. Policy case

Social account matrix for AIM/Material

			Prod	uction s	sector	п	In	vestme	ent			t
			Sector 1	Sector 2	Sector 3	Final Consumption	Sector 1	Sector 2	Sector 3	Supply	Price	Endowment
	iate	Commodity 1	X ₁₁	X ₁₂	X ₁₃	C ₁	I ₁₁	I ₁₂	I ₁₃	Y ₁₁ +Y ₂₁ +Y ₃₁	P ₁	
	Intermediate inputs	Commodity 2	X ₂₁	X ₂₂	X ₂₃	C ₂	I ₂₁	I ₂₂	I ₂₃	Y ₁₂ +Y ₂₂ +Y ₃₂	P ₂	
Input	Inte	Commodity 3	X ₃₁	X ₃₂	X ₃₃	C ₃				Y ₃₃	P ₃	
, ,		Capital	K ₁	K ₂	K ₃						P _K	K [*]
		Labor	L ₁	L ₂	L ₃						PL	L*
	F	Final disposal			W ₃						P _W	W^*
ut	(Commodity 1	Y ₁₁	Y ₂₁	Y ₃₁						P ₁	
Output	(Commodity 2	Y ₁₂	Y ₂₂	Y ₃₂						P ₂	
0	(Commodity 3			Y ₃₃						P ₃	

Formulation of AIM/Material

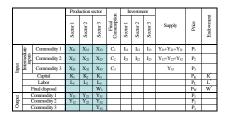
• Market equilibrium

 $P_i \geq 0$

– Produced commodity

$$P_i\left\{\sum_{j=1}^{3} Y_{ji} - \left(\sum_{j=1}^{3} X_{ij} + C_i + \sum_{j=1}^{3} I_{ij}\right)\right\} = 0$$

			Prod	uction s	sector	c	In	vestm	ent			
			Sector 1	Sector 2	Sector 3	Final Consumption	Sector 1	Sector 2	Sector 3	Supply	Price	Endowment
	ale	Commodity 1	X_{11}	X12	X_{13}	C1	I_{11}	I12	I13	$Y_{11}\!\!+\!\!Y_{21}\!\!+\!\!Y_{31}$	Pi	
	Intermediate inputs	Commodity 2	X21	X22	X23	C_2	I21	I22	I ₂₃	$Y_{12}\!\!+\!\!Y_{22}\!\!+\!\!Y_{32}$	P2	
Input	Inte	Commodity 3	\mathbf{X}_{31}	X32	X33	C_3				Y ₃₃	P3	
		Capital	K	K ₂	K3						P _K	K.
		Labor	L	L ₂	L ₃						PL	Ľ.
	F	Final disposal			W3						Pw	W
Ħ		Commodity 1	Y11	Y ₂₁	Y31						Pi	
Output		Commodity 2	Y12	Y22	Y ₃₂						P2	
0	(Commodity 3			Y ₃₃						P3	


 $\sum_{j=1}^{3} Y_{ji} - \left(\sum_{j=1}^{3} X_{ij} + C_i + \sum_{j=1}^{3} I_{ij}\right) \ge 0$ - production factor (capital, labor, ...)

$$P_{K}\left\{K^{*}-\sum_{j=1}^{3}K_{j}\right\}=0, P_{K}\geq0, \text{ and } K^{*}-\sum_{j=1}^{3}K_{j}\geq0$$
$$P_{L}\left\{L^{*}-\sum_{j=1}^{3}L_{j}\right\}=0, P_{L}\geq0, \text{ and } L^{*}-\sum_{j=1}^{3}L_{j}\geq0$$
$$P_{W}\left\{W^{*}-\sum_{j=1}^{3}W_{j}\right\}=0, P_{W}\geq0, \text{ and } W^{*}-\sum_{j=1}^{3}W_{j}\geq0$$

-Model formulation-

Formulation of AIM/Material

• Balance of production sector $\sum_{i=1}^{3} P_i X_{ij} + P_K K_j + P_L L_j + P_W W_j = \sum_{i=1}^{3} P_i Y_{ij}$

• Balance of final demand sector $H = P_K \sum_{j=1}^{3} K_j + P_L \sum_{j=1}^{3} L_j + P_W \sum_{j=1}^{3} W_j$ $H = \sum_{i=1}^{3} P_i (C_i + \sum_{j=1}^{3} I_{ij})$

		Prod	uction s	sector	u	In	vestm	ent			-	
				Sector 2	Sector 3	Find Consumption	Sector 1	Sector 2	Sector 3	Supply	Price	Endowment
	ute	Commodity 1	\mathbf{X}_{11}	X_{12}	X_{13}	C ₁	I_{11}	I_{12}	I ₁₃	$Y_{11} + Y_{21} + Y_{31}$	P1	
	ermediate inputs	Commodity 2	\mathbf{X}_{21}	X22	X23	C_2	I ₂₁	I ₂₂	I ₂₃	$Y_{12}\!\!+\!\!Y_{22}\!\!+\!\!Y_{32}$	P_2	
Input	Inte	Commodity 3	X31	X32	X ₃₃	C3				Y ₃₃	P ₃	
		Capital	K ₁	K ₂	K ₃						PK	K
		Labor	L	L_2	L						P _L	Ľ
	1	Final disposal			W ₃						Pw	W
Ħ	(Commodity 1	Y ₁₁	Y ₂₁	Y ₃₁						P ₁	
Output		Commodity 2	Y12	Y ₂₂	Y 32						P ₂	
Ő	0	Commodity 3			Y ₃₃						P ₃	

- Capital stock and investment
 - for dynamics

 $K_{j,t+1} = (1 - \delta_j) K_{j,t} + \sum_{i=1}^{3} I_{ij}$

Formulation of AIM/Material

- Relationship between input and output
 - Production function
 - Demand function

CES, Leontief, Cobb-Douglas, Linear, ...

- Household: Maximize utility
- Production sector: Maximize profit
 Find equilibrium solution

Dataset for AIM/Material Model

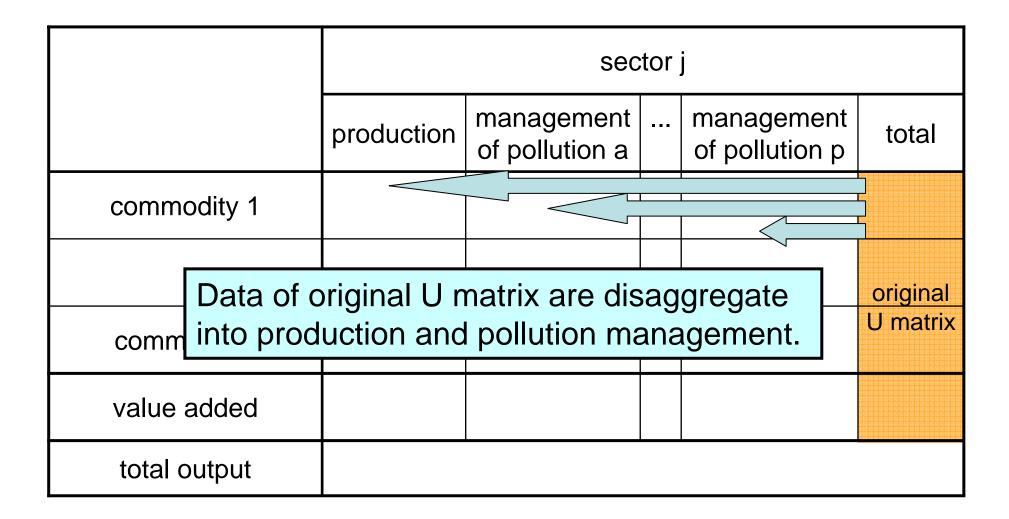
- IO table (commodity x commodity)
- U matrix (commodity x sector)
 - Disaggregate pollution management
- V matrix (sector x commodity)
- Investment by sector
 - Disaggregate pollution management
- Pollution flow by sector
 - Generation, treatment, discharge, recycle, ...
- Supply and demand of reused material

- Necessary data for simulation-

Input-Output table

household consumption, government consumption, investment, export

	commodity 1		commodity i	final demand	total output			
commodity 1								
:		Distribution of produced comm to production of commodity an						
commodity i			final demand	<mark>d is presente</mark>	d.			
value added								
total output	/,							
		what kind of inputs and how much of them are necessary.						


U matrix (Use matrix)

	sector 1	•••	sector j	final demand	total output	
commodity 1						
:				of produced and final demaind	•	
commodity i						
value added						
total output						
		of in <mark>j</mark> are r	/			

- Necessary data for simulation-

Revised U matrix

(disaggregate production and pollution management)

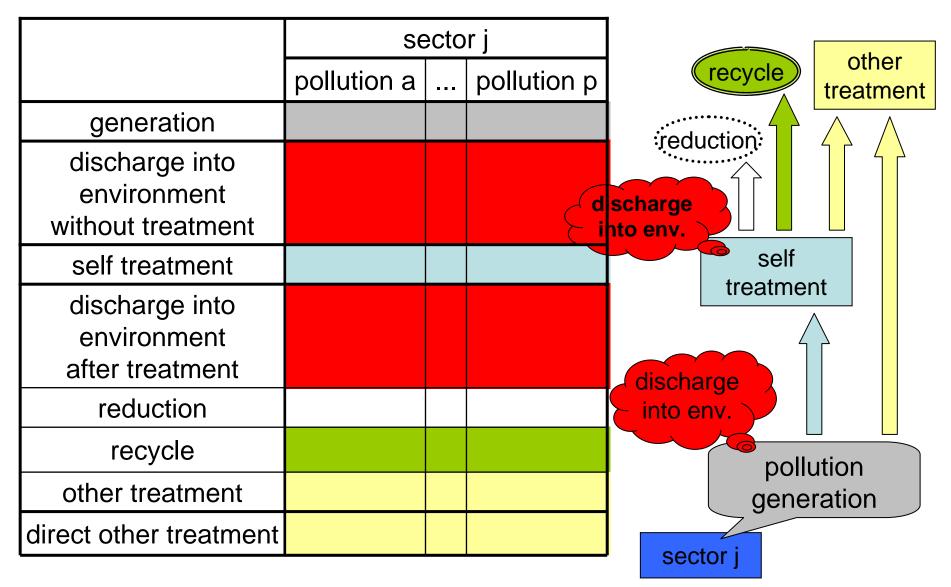
V matrix (Make matrix)

	commodity 1	 com	modity i	total output
sector 1				
:				
sector j				
total output	How much of comproduced by sec is represented.	aity i		

Investment by sector

	commodity	/ 1	 commodity i	total investment
sector 1				
:				
sector j			ch of commodi	
total output		inve is re		

Pollution flow by sector


Pollution type

- Air pollution: SOx, NOx, CO2, ...
- Water pollution: BOD load, COD load, ...
- Solid waste: sludge, scrap metal, slag, ...
 - In the case of Japan, the number of the most detailed classification is almost 70.
- Other:
 - Toxic waste: Pb, dioxin, ...

- Necessary data for simulation-

IO/U/V/investment/

pollution/reuse Pollution flow by sector

Supply and demand of reused material

	com	nmodity 1		commodity i	total generation of reused pollution		
pollution a							
:							
pollution p							
total supply of							
reused commodity		How much of pollution p					
		can be supplied as commodity i.					

Supply and <u>demand</u> of reused material

	sec	tor 1		sector j	total supply of reused pollution		
commodity 1							
:							
commodity i							
total demand of							
reused commodity		How much of recycled commodity i can be demanded in sector j.					

- Necessary data for simulation-

Optional Data for AIM/Material Model

- Energy balance table
 - Link physical data from energy balance table and monetary data from U matrix
- Other physical material data
 - Raw materials such as wood, paper, steel, ...
 - Link these physical data and monetary data

Scenarios for AIM/Material Model

• Technology change

- Energy efficiency, pollution generation, pollution management, recycled material input, and so on for new equipment (investment)
- Labor force
- Export and import
- Preference change
 - Final consumption, investment, ...

Application of AIM/Material Model

- Economic impacts due to environmental preservation
 - CO2 reduction (Kyoto target), waste reduction, waste water treatment, ...
- Mitigation by countermeasures
 - Environmental investment, preference change, new technology, tax reform, CDM, ...
- Link with bottom up model such as AIM/Emission

→Detailed results will be represented in session 7.