Thailand CGE Model AIM/Material

Sunil Malla Wongkot Wongsapai Asian Institute of Technology Dec 2, 2004

APEIS Training Workshop

NIES/Japan

Outline

- Thailand CGE model;
 - → Thailand: At-a-glance
 - → Model characteristics in Static and dynamic model
 - → Data input and definition
 - \rightarrow Policy simulation
- Results and Policy implications
- Modeling experiences
- Proposed Activities
- Conclusions

Thailand: At a Glance [End of 2003]

- Population: 63.0 Millions
- **GDP:** 140.1 Billion US\$; 8.9% growth → 10.4%@2004q1-2
- Status on KP: Non-Annex I (Ratified: August 28, 2002)
- Final Energy Consumption: 56,289 kTOE
- Energy-Related Carbon Emissions: 48.5 million metric tons of carbon (0.7% of world)
- Energy Intensity: 8,126 Btu/US\$1995
- Carbon Intensity: 0.14 metric tons /thousand US\$1995

Economic Growth, Energy Use & CO₂ Emission

- <u>AAGR:</u>
 - TPES: 5.9%
 - GDP: 6.4 %
 - CO₂ emission: 8.0 %
- CO₂ emission from energy use accounts for more than 70% of the total CO₂ emission.

Economic growth of Thailand and other countries

GDPPPP at 1995 prices; from ADB, NESDB, OECD

Primary Energy Consumption (1985=100)

Model Characteristics

- Static and Dynamic CGE model with nested C-D functions of production and consumer structures,
- 27*27 sectors/commodities with 8 energy-related sectors (Coal, Crude oil and natural gas, petroleum (4), Electricity, Gas distribution) from 61 sectors of 1998 SAM for Thailand,

Sector Claret ions

27 Sectors/commodities with 19 A-Energy sectors

1	Agriculture, livestock, forestry, shery	23	Construction
4	Other non-energy mining	24	Trade
5	Food, beverage and tobacco	25	Hotels & Restaurants
6	Textile, leather, and the products	26	Transport & Communications
7	Timber and wooden products	27	Services
8	Pulp, paper and printing e.g.Cement		8 Energy sectors
9	Chemical products Produ	ction	Coal and lignite
14	Plastic and rubber products	3	Crude petrol and natural gas
15	Non-metallic mineral products	10	Gasoline
16	Metal products	11	Diesel
17	Machinery	12	Aviation fuel
18	Transport equipment	13	Fuel oil
19	Other manufacturing products	20	Distribution Electricity
22	Water	21	Gas distribution

Model Characteristics

Main data input:

- Base year 1998 → forecast to 2030
- U- and V-Matrix data are disaggregated from 1998 SAM for Thailand by IFPRI,
- Population data are taken from national forecast from 2001 to 2030,
- From 2000 to 2016, GDP growth rate are taken from national GDP forecast data (current prices), by sector. After 2016 to 2030, 5% GDP growth rate in all sectors was assumed,

Model Characteristics

Main data input:

- Fixed Capital Formation data are estimated from the proportion of Capital data in U-Matrix,
- All Energy data, in both consumption and prices, are taken from 1999 MoE data,
- Based on I-O table, crude oil and Natural gas production are aggregated into only one sector,

Scenarios Simulations

- 1. Reference or BAU Scenario
 - → Based on 5% CO₂ increase per year
 - → Economic and population based on country data
- 2. Energy Efficiency (EE) Scenario
 - → Assume 10% increase in EE investment in energy-intensive manufacturing sectors (Cement, Basic metal, Paper sector)
- 3. Tax Scenario
 - \rightarrow Based on 4 types of taxes (K, L, C, and I)
 - → Results from the tax are limited to the year 2016 due to the data problem

Results from the model BAU Scenario

GDP Forecast

Sensitivity Analysis

Difference btw. BAU forecast with Real Data

BAU Scenario

Compared with the real data, CO₂ emission and GDP during 1999 to 2001 is less than 5% error, while import and export data is ~10% error,

Note; During 2029-2030, the GDP decreases while consumption is equal to zero.

Results from the model BAU compare with Energy Efficency and Tax Scenario

Result

EE Scenario

Results under BAU and EE scenarios are almost similar The model results for consumption seems to have a problem while the other variables (GDP, import, export, investment, and CO₂) have the similar trends,

The reasons behind this may be :

- the restricted flexibility of elasticity of substitution in the model, and
- The limited impacts from selected three manufacturing sectors
- the labor is assumed as exogenous in the model while capital is assumed as endogenous

Result

Tax Scenario

Results from the tax are limited to the year 2016 due to the data problem, The values of import is lower due to the import tax (which is 1/4 of the total tax), The values of investment is lower due to the labor tax (which is more than 1/4 of the total tax), For the case of consumption, the results seems to be against the economic theory ??? (Consumption should decrease when tax is imposed...)

Modeling Experiences

Data Limitations

- Fixed capital formation and labor tax data,
- Oil and gas production data from I-O are presented in the same sector,
- All energy related conversion data (CO₂/ktoe, extraction cost, etc.) are taken from Japan database,
- Limited exposure to MPSGE
- SAM to V- and U-Matrix concept

Proposed Activities

- (1) Disaggregate the Electricity sector into 7 sub-sectors particularly for energy related environmental issues :
 - → Increase the share of biomass power plant to 5% by 2010 (RPS) \rightarrow Thai policy → Natural gas import and infrastructure ?

Special treatment: Electricity Generation

Proposed Activities

(2) Extend the energy efficiency issues to measure the <u>Rebound effect</u> from the <u>National Energy</u> <u>Conservation Promotion Act</u>;

(3) Carbon reduction policy

- Carbon tax (distributional effects)
- Energy tax (Btu)
- Tax revenue recycling schemes

(4) Reduce energy consumption by $10\% \rightarrow$ Thai policy

- Through energy efficiency improvement
- Through innovative technologies (SDB)

Looking Forward

- Understanding the linkage of top down and bottom up models within AIM models family
- Additional works need to be carried out particularly on Database for Thailand
- The policy options (energy security, CDM) should be coherent with national policies
- In Thailand, local & regional pollutants are important as well (AIM/air??)
- Working towards IPCC Scenarios in modeling
- Linking information from SDB as a future policy that can be used in AIM family of models

"To develop highly qualified and committed professionals who will play a leading role in the sustainable development of the region and its integration into the global economy"

ASIAN INSTITUTE OF TECHNOLOGY

Thanks you