Integrated Assessment on Environmental Strategies & Health Impacts due to Air Pollution in China

Yue WAN Tokyo Institute of Technology APEIS Training Workshop NIES, 8 December 2004

The main topics

- Dose-response relationship
- □ Application of AIM/Material model (CGE)
- □ Application of AIM/Local model (bottom-up)
- □ GIS analysis (Idrisi Kilimanjaro)

What is air pollution?

Air pollution is the presence in the atmosphere of a mix of chemicals and particles which is harmful to human, animal and plant.

What are the sources of air pollution?

- □ Nature: volcanic eruption, forest fire....
- □ Man-made:
 - combustion: fossil fuels, etc
 - non-combustion: production process, road dust.....

What are the components of air pollution?

- □ Gaseity pollutants: SO₂, NOx, CO, hydrocarbon
- Particulates: a mixture of solid particles and liquid droplets which toxicity vary in size and composition
 - Composition: Pb, Cd, Ni, Mn, Fe, Al, Br, PAH...
 - Carrier: gaseity pollutant, microorganism
 - Size: aerodynamic diameter

Particulates less than 10um in diameter are most relevant to human health effects. They can penetrate anywhere within the respiratory tract beginning with the nasal passages to the alveoli, deep within the lungs according to diameter size.

PM₁₀ is the primary air pollutant in China at present

Quantification of health effects

- □ The way we test the health effects of air pollution is to watch the time trend of the pollutants and see if it is similar to the time trend of health effects.
- Selection of air pollution indicator: PM₁₀ for China Independent negative impact, no-harvesting, no threshold Reference: WHO guidelines for air quality
- Selection of health outcomes
 - Sub-clinical health effects, lung function, immune function, low birth weight, intelligence quotient, et al. are excluded
 - Quantitative dose-response relationship between air pollution and health effects should have been established
 - Baseline disease data of the focused health effect in the target population should be available

Selected health outcomes associated with PM_{10} exposure in China

- Non-accident mortality
 - Acute mortality
 - Chronic mortality
- Morbidity
 - Hospital visit (internal medicine & pediatrics)
 - Hospital admission (respiratory, cardiovascular & cerebrovascular)

- Other diseases (acute upper respiratory tract infectious, chronic bronchitis)

International Statistical Classification of Diseases (ICD)

Dose-response relationship

 $E = POP \times M \times (e^{\beta \Delta C} - 1)$

POP: the exposed population

M: baseline disease data of mortality or morbidity

 β : coefficient of dose-response relationship

 ΔC : change of pollutant concentration

Source of β :

-Local epidemiological studies are preferable

-Meta analysis (mean and 95% CI): refer to the manual of STATA, SAS

- 1. Deaths by age groups
- 2. Illness by age groups
- 3. Workday losses
- 4. Medical expenditure

How to value health impacts

Two popular approaches in China

1. Human capital approach

The market value of a premature death equals the discounted flows of earning in the future if he had not died.

2. Contingent valuation approach

It is based on the personal subjective responses rather than actual behavior that how much an individual is willing to pay to reduce the risk of dying or illness.

Implications: economic burden of disease from the point of view of people

Reference: National burden of disease studies: a practical guide. WHO, 2001.

3. CGE model: health impacts on national economy

Schematic Diagram of CGE model

\$DEMAND:HOUSEHOLD

Decrease in labor endowment

Medical expenditure should be treated as negative endowment

Impacts of labor loss and health service demand on the final consumption by commodities

Impacts of health service demand on the output by sectors

Structure of AIM/Material Model for health

Code	Sector and Commod	Sity:	Industry
AGR	Agriculture, forestry, and fishery		I
M_C	Coal mining		
M_O	Crude oil exploration		
M_G	Natural gas exploration		
MIN	Other mining]
FOD	Food and tobacco products		
TEX	Textile production		
WOD	Production of wood and wood products		
PAP	Paper and pulp production		
OIL	Oil refinery		
COL	Coking		
CHM	Chemical products		
NMP	Nonmetallic mineral products		
STL	Iron and steel		
NFR.	Nonferrous metals		п
MET	Metalworking machinery		-
OHI	Other machinery products		
REP	Maintenance and repair of machinery and	equipment	
OLI	Other manufacturing products		
ELC	Coal-based power generation		
ELG	Gas-based power generation		
ELO	Oil-based power generation		
ELH	Hydropower generation	ELE: Electricity	
ELN	Nuclear power generation	LLL LIGODICHY	
ELP	Photovoltaic generation		
ELW	Wind power generation		
ELB	Biomass power generation		
HET	Stearn and hot water		
GAS	Gas		
WTR	Water		
CNS	Construction		
TF	Freight transport		
COM	Commerce		
RES	Restaurants		
T P	Passager transport		ш
HEL	Health service		
OSR	Other services		

Inclusion of SO₂ and PM emissions as biproducts of economic activities in AIM/Material (data source: SEPA) - total amount constraint on SO₂ and PM - impose SO₂ tax

Household → rural /urban Final consumption Investment Labor and capital endowments - different problem of air pollution

- change of energy structure in rural areas

Schematic Diagram of Integrated Assessment

Linkage between AIM/Material Model and AIM/Local Model

Structure of AIM/Local Model of China

Database source : Energy Research Institute, China

Data modification in AIM/Local model

Change in Energy Data

No.	Energy *	Energy Price or	Energy Factor *					
0110.	Lindigy	Emission Factor *	Year1	Value1	Year2	Value2	Year3	١
1	[COAL1] Coal1(S content less than 1.0)	[Price] (Yuan/Gcal)	2000	54	2010	58.69	2020	
2	[HOIL] Heavy Oil 🔹	[Price] (Yuan/Gcal)	2000	126.5	2010	157.46	2020	
3	[ELEI] Electricity(industry)	[Price] (Yuan/Gcal)	2000	558	2010	577.32	2020	
4	[NGS] Natural Gas 🔹	[Price] (Yuan/Gcal)	2000	187	2010	208.1	2020	
5	[COK] Coke	[Price] (Yuan/Gcal)	2000	78.5	2010	93.51	2020	

Service Demand(Area Source)

No	Denion 1 *	Service *		Service Demand *					
NU.				Value1	Year2	Value2	Year3	Value	
2	[BJ] Beijing 📃	[STE] Crude Steel (1000 ton)	2000	1	2010	1	2020		
<u></u>	? [TJ] Tianjin 📃	[STE] Crude Steel (1000 ton)	2000	4	2010	4	2020		
	[HB] Hebei	[STE] Crude Steel (1000 ton)	2000	1707	2010	1607	2020		
4	SHX] Shanxi 🗾	[STE] Crude Steel (1000 ton)	2000	663	2010	663	2020		
ļ	i [NMG] Neimengl 🗾	[STE] Crude Steel (1000 ton)	2000	311	2010	311	2020		

Emission map (vector)

A-GIS

Convert the results of AIM/Local to grid data that will be the input of air model

A Microsoft Access	
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert <u>T</u> ools <u>W</u> indow <u>H</u> elp	Type a question for help 👻
🗅 😅 🖬 🔁 🖪 🔃 🖤 👗 🖻 💼 🗠 - 💹 - 📠 -	🖄 🐽 🖆 📲 🚈 • 😰 🖕
Form_AGIS : Form	A-GIS_031225 : Database (Access 2000 file format)
A_GIS	🖓 Open 🔛 Design 🐂 New 🗙 🏱 🖭 📰 🏢
1.Making of table for display on GIS.	Objects 🛄 Emission_Area_CHN_Steel 🔠
	III Tables III Emission_Area_CHN_TRN III
2.Making of grid data. Go!	🛄 Queries 🛄 Emission_Area_CHN_URB 🛄
	Emission_LPS_CHN_CEM
Close	Emission_LPS_CHN_Ele
	Reports Emission_LPS_CHN_NFR
Record: 14 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pages Emission_LPS_CHN_OTH III
	Macros Emission_LPS_CHN_RRL
	Emission_LPS_CHN_SRV
	Emission_LPS_CHN_Steel
	Groups III Emission_LPS_CHN_TRN III
	💽 Favor 🛄 Emission_LPS_CHN_URB 🛄
	· · · · · · · · · · · · · · · · · · ·
Ready	

Standard dataset: polygon map and grid map for Asia countries

Grid map of emission (raster, 30sec)

Numbers of population expose to certain pollution level

Health effects under the different scenarios

		BAU	l scenario		Scenario 1			
•	rate of labo	or loss(%)	medical exper	nditure(yuan)	n) rate of labor loss(%) medical expenditure(diture(yuan)	
	Urban	Rural	Urban	Rural	Urban	Rural	Urban	Rural
2000	0	0	0	0	3	3	3000	3000
2001	0	0	0	0	2	2	2000	2000
2002	0	0	0	0	1	1	1000	1000
2003	0	0	0	0				
2004	0	0	0	0				
2005	0	0	0	0				
2006	0	0	0	0				
2007	0	0	0	0				
2008	0	0	0	0				
2009	0	0	0	0				
2010	0	0	0	0				
2011	0	0	0	0				
2012	0	0	0	0				
	0	0	0	0				
	0	0	0	0				
	0	0	0	0				
	0	0	0	0				
	0	0	0	0				
	0	0	0	0				

Thank You!