
#### CGE model development (1)

# Concept of CGE model and simple CGE model based on IO data



#### Toshihiko MASUI

**National Institute for Environmental Studies** 

AIM Training Workshop 2005 NIES, 7-11 November 2005

## What's "Model"?

- Model represents a specific aspect of real world.
  - When we develop a model, we must understand objectives.
  - We can simulate the future in advance by using model.
- The representation in model is not real world but ideal world.
  - We must take into account difference between actual world and modeled model.



# Model for environmental policies

- Not only economic activity but also environment will be taken into account.
- What's the relationship between environment and economy?
  - Provision of services and goods
  - Assimilation of pollutants
  - Degradation of environmental quality
  - Maintenance of environment
- > What is key option to protect the environment?
  - Technology: more efficient, renewable energy, ...
  - Institution: tax, regulation, ...
  - Management: operation, skill, ...
- By using model, effectiveness of environmental options can be assessed in advance.



### What's CGE?

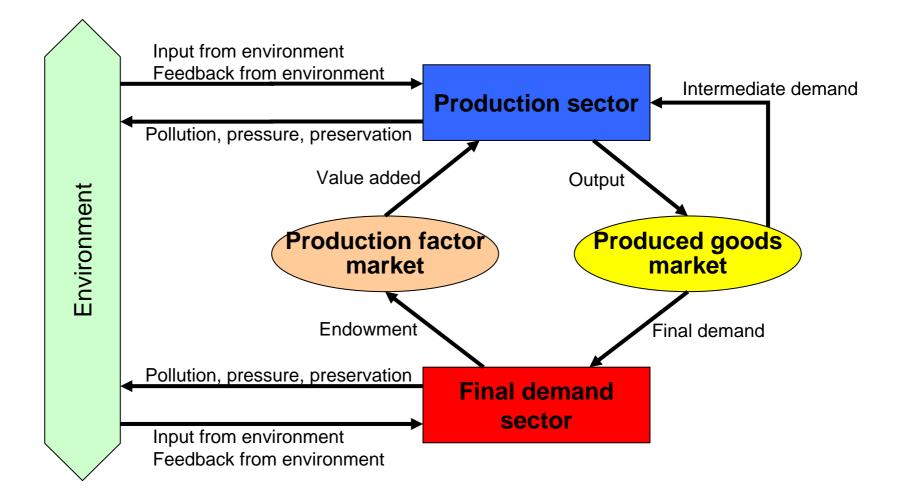
- "Computable": quantitative
- "General": treatment of all commodities, sectors and production factors in the treated society
- "Equilibrium": demand and supply of each commodity and factor are balanced through the price mechanism



## **Features of CGE**

- Multiple interacting agents.
- Individual behavior based on optimization.
- Most agent interactions are mediated by market and prices.
- > Typically disaggregate, with many agents and markets.
- Limited data in comparison with the number of behavioral and technological parameters in the model.
- Equilibrium allocations which typically cannot be characterized as the solution to a single (planner's) optimization problem.
- Formulation has as implicit or explicit focus on policy analysis.

By using CGE, detailed impacts of policy on price, activity, income and so on can be simulated in advance.




#### Procedure of CGE model development

- 1. Design rough model structure
  - Relationship among production sector, final demand, commodity & environment
- 2. Define elements
  - Classification of production sector, final demand, commodity, ...
- 3. Design detailed model structure
  - Commodity flow, function, elasticity of substitution, ...
- 4. Quantify data
  - Parameters setting
- 5. Formulate model (programming)
- 6. Simulate model
  - Replication of benchmark
  - Quantification of policy simulation



# 1. Rough sketch of model





# 2. Definition of CGE model

Simple example:

Based on IO table, model with 2 commodities, 2 sectors & 1 final demand is developed.

- Commodity: not only goods & service but also production factor & hypothetical commodity
- Sector: production sector & hypothetical sector
  - input (demand) commodities
  - output (supply) commodities
    Maximizing profit subject to production function
- Final demand:
  - supply endowments and get income
  - demand commodities
    Maximizing utility subject to income.



# Commodity

In simple example

- > Produced commodity
  - commodity 1 (PY("com1"))
  - commodity 2 (PY("com2"))
- > Production factor
  - capital (PK)
  - labor (PL)
- > Hypothetical commodity
  - aggregated final consumption goods (PC)
  - aggregated investment goods (PI)

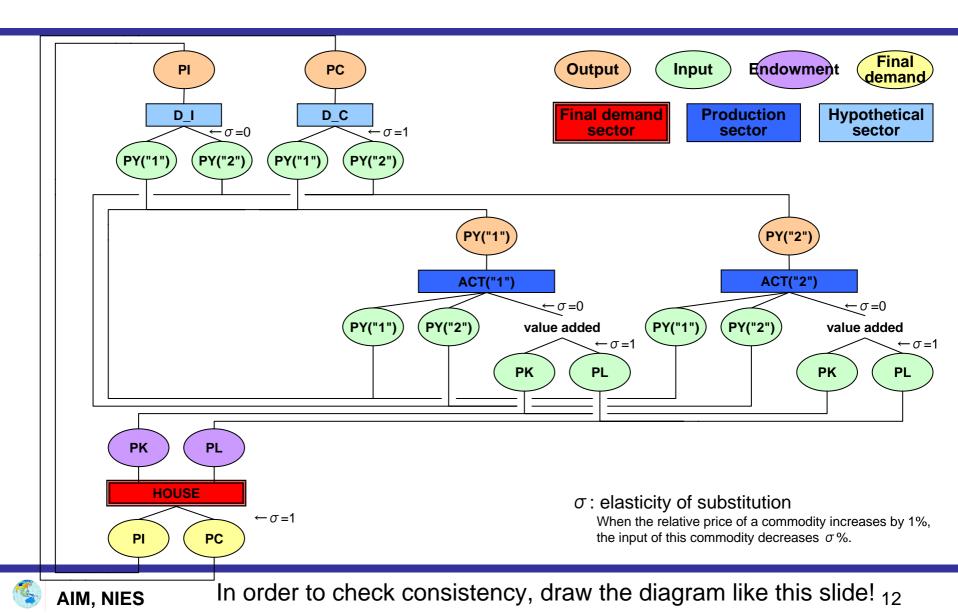


#### Sector

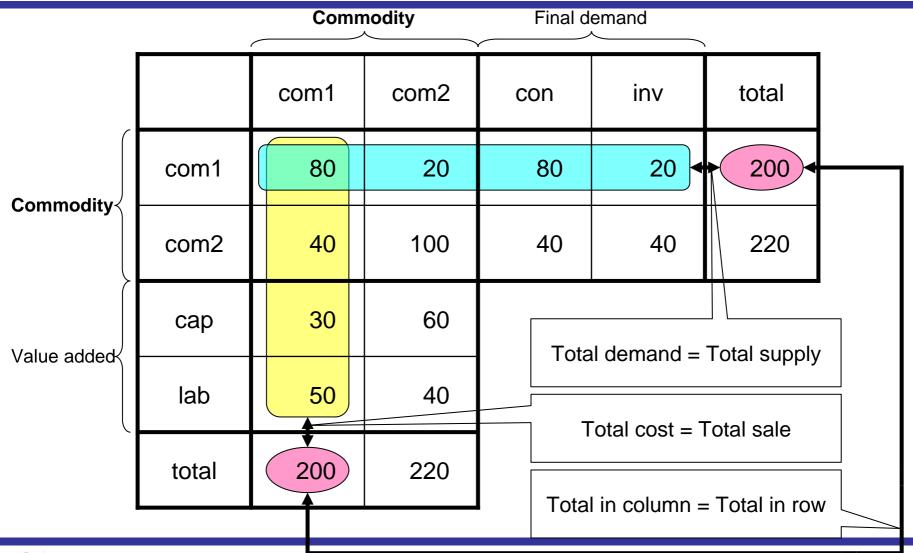
In simple example

- > Production sector
  - sector producing commodity 1
  - sector producing commodity 2
    - Input: com1, com2, CAP & LAB
    - Output: com1 or com2
- > Hypothetical sector
  - aggregation of final consumption goods
  - aggregation of investment goods




#### **Final demand**

In simple example


- Endowment
  - Capital
  - Labor
- Final demand
  - Final consumption
  - Investment (fixed capital formation) = saving



#### 3. Detailed model structure



### 4. Quantify data (IO table)



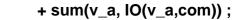


- Based on GAMS/MPSGE format.
- Solution by MCP (Mixed Complementarity Problem)

 $P_i * f_i(P_i) = 0, P_i \ge 0, f_i(P_i) \ge 0$ 

*P*<sub>i</sub>: price

 $f_i(P_i)$ : excess supply


When demand equal supply ( $f_i(P_i)=0$ ), price is positive ( $P_i > 0$ ).

When supply exceeds demand ( $f_i(P_i) > 0$ ), price is 0 ( $P_i=0$ ).

- Optimization model is converted to simultaneous equations.
- See manual for installation of GAMS.



| set<br>com<br>v_a<br>;<br>alias (co | commodity /com1, com2/<br>value added /cap, lab/<br>om,c_m) ; |           |     |     | scalar<br>tot_c<br>tot_i<br>tot_k<br>tot_l<br>; | total consumption<br>total investment<br>total capital<br>total labor |  |  |
|-------------------------------------|---------------------------------------------------------------|-----------|-----|-----|-------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Table IC                            | D(*,*) input c                                                | output ta | ble |     | tot_c                                           | = sum(c_m, IO(c_m,"con")) ;                                           |  |  |
|                                     | com1                                                          | com2      | con | inv | tot_i                                           | = sum(c_m, IO(c_m,"inv")) ;                                           |  |  |
| com1                                | 80                                                            | 20        | 80  | 20  | tot_k                                           | = sum(com, IO("cap",com)) ;                                           |  |  |
| com2                                | 40                                                            | 100       | 40  | 40  | tot_l                                           | = sum(com, IO("lab",com)) ;                                           |  |  |
| сар                                 | 30                                                            | 60        |     |     |                                                 |                                                                       |  |  |
| lab                                 | 50                                                            | 40        |     |     | parameter                                       |                                                                       |  |  |
| ;                                   |                                                               |           |     |     | •                                               | out(com) total output                                                 |  |  |
| ,                                   |                                                               |           |     |     | ;                                               | •                                                                     |  |  |
|                                     |                                                               |           |     |     | out(com)                                        | = sum(c_m, IO(c_m,com))                                               |  |  |

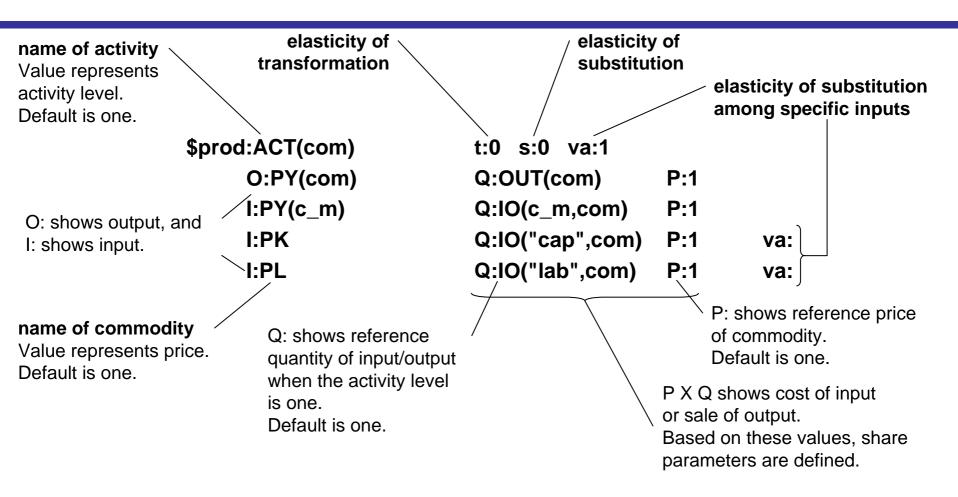




| set    Definition of commodity type as a set.      com    commodity /com1, com2/      v_a    value added /cap, lab/      ;    Copy of set.      alias    (com,c_m); | scalarDefinition of scalar.tot_ctotal consumptiontot_itotal investmenttot_ktotal capitaltot_ltotal labor;                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table IO(*,*) input output tablecom1 com2 con invcom180208020com2401004040cap3060Iab5040;Dataset by using table format.Here, input-output table is indicated.       | Quantification of defined scalar.tot_c= sum(c_m, IO(c_m, con ));tot_i= sum(c_m, IO(c_m,"inv"));tot_k= sum(com, IO("cap",com));tot_l= sum(com, IO("lab",com));parameterDefinition of parameter.out(com)total output; |

out(com) = sum(c\_m, IO(c\_m,com)) + sum(v\_a, IO(v\_a,com));

Quantification of defined parameter.




| \$ontext                  |                           | \$prod:D_C         | s:1                                 |  |  |
|---------------------------|---------------------------|--------------------|-------------------------------------|--|--|
| \$model:sample            |                           | O:PC               | Q:tot_c                             |  |  |
| \$sectors:                |                           | I:PY(c_m)          | Q:IO(c_m,"con")                     |  |  |
| ACT(com)                  | ! production              |                    |                                     |  |  |
| DC                        | ! final consumption       | \$prod:D_I         | s:0                                 |  |  |
| D I                       | ! fixed capital formation | O:PI               | Q:tot_i                             |  |  |
| <b>-</b>                  | i inter capital formation | I:PY(c_m)          | Q:IO(c_m,"inv")                     |  |  |
| \$commodities:            |                           |                    |                                     |  |  |
| PY(com)                   | ! commodity               | \$demand:HOUSE     | s:1                                 |  |  |
| PK                        | ! capital                 | D:PC               | Q:tot c                             |  |  |
| PL                        | •                         |                    |                                     |  |  |
|                           | ! labor                   | D:PI               | Q:tot_i                             |  |  |
| PC                        | ! final consumption       | E:PL               | Q:tot_l                             |  |  |
| PI                        | ! investment              | E:PK               | Q:tot_k                             |  |  |
| \$consumers:              |                           | \$report:          |                                     |  |  |
| HOUSE                     | ! household               | V:ACTPK(com)       | I:PK prod:ACT(com)                  |  |  |
|                           |                           | V:ACTPL(com)       | I:PL prod:ACT(com)                  |  |  |
|                           |                           | \$offtext          |                                     |  |  |
| <pre>\$prod:ACT(con</pre> | n) t:0 s:0 va:1           | <b>W</b> OMEXT     |                                     |  |  |
| • •                       | ) Q:OUT(com)              | \$SYSINCLUDE MPSGE | <b>\$SYSINCLUDE MPSGESET SAMPLE</b> |  |  |
| •                         | Q:IO(c_m,com)             |                    | \$INCLUDE SAMPLE.GEN                |  |  |
| I:PK                      |                           |                    | SOLVE SAMPLE USING MCP;             |  |  |
|                           |                           | SOLVE SAMPLE USING | SINCE,                              |  |  |
| I:PL                      | Q:IO("lab",com) va:       |                    |                                     |  |  |
|                           |                           |                    |                                     |  |  |



| \$ontextSign of start of formulation.\$model:sampleDefinition of model name.\$sectors:Definition of sector.ACT(comp: production         | \$prod:D_C<br>O:PC<br>I:PY(c_m)                                    | s:1<br>Q:tot_c<br>Q:IO(c_m,"con")                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|
| D_C    ! final consumption      D_I    ! Words after "!" show comment                                                                   | \$prod:D_I<br>O:PI<br>I:PY(c_m)                                    | s:0<br>Q:tot_i<br>Q:IO(c_m,"inv")                                    |
| \$commodities:PY(corDefinition of commodity.PK! capπaiPLPC! final consumptionPI! investment                                             | \$demand:HOUSE<br>D:PC<br>D:PI<br>E:PL<br>E:PK Definition c        | s:1<br>Q:tot_c<br>Q:tot_i<br>Q:tot_l<br>of activity in final demand. |
| \$consumers:<br>HOUSEDefinition of final demand.Definition of activity in sector.                                                       | V:ACI                                                              | I:PL prod:ACT(com)                                                   |
| \$prod:ACT(com) c:o s:o va:n<br>O:PY(com) Q:OUT(com)<br>I:PY(c_m) Q:IO(c_m,com)<br>I:PK Q:IO("cap",com) va:<br>I:PL Q:IO("lab",com) va: | Sign of end of<br>\$SYSINCLUDE MPSG<br>\$INCLUDE SAMPLE.G<br>SOLVE | ESET SAMPLE<br>SEN<br>ation of simulation                            |







# 6. Simulation

- 1. Replication of benchmark
- 2. Sensitivity analysis to check parameters
- 3. Scenario and policy design
- 4. Simulation based on scenario
- 5. Analysis of results
- 6. Assessment of alternative scenarios and policies



# How to apply CGE

- 1. Translate policy into the model instruments.
- 2. Guess at the policy results.
- 3. Run the simulation and compare results.
- 4. Compare the model results with your earlier guess.
- 5. Evaluate the outcome and write up your key findings.
- 6. Develop sensitivity analyses.
- 7. Write up the model.

