

Biomass Strategies for Aligning Sustainable Development and Climate Goals

P.R. Shukla

Indian Institute of Management, Ahmedabad

Presentation for the

AIM Training Workshop November 7-11, 2005, National Institute for Environment Studies, Tsukuba, Japan

MDG, India's National Targets, Biomass and Climate Change

MDG and global targets	India's National plan targets	Interface with Climate Change
Goal 1: Eradicate extreme poverty and hunger Targets: Halve, between 1990 and 2015, the proportion of people with income below \$1 a day and those who suffer from hunger	Double the per capita income by 2012 Reduce poverty ratio by 15% by 2012 Contain population growth to 16.2% between 2001-2011	Bio-energy can enhance rural income, substitute oil imports and enhance mitigative & adaptive capacity Lower population reduces pressure on land, water and energy consumption
Goal 7: Ensure environmental sustainability Targets: Integrate SD principles in country policies/ programs to reverse loss of environmental resources Target: Halve by 2015 the proportion of people without sustainable access to safe drinking water	Increase in forest cover to 25% by 2007 and 33% by 2012 (from 23% in 2001) Sustained access to potable drinking water to all villages by 2007 Electrify 80,000 additional villages by 2012 via decentralized sources Cleaning of all major polluted rivers by 2007 and other notified stretches by 2012	Enhanced sink capacity; energy security due to substitution of fossil imports; reduced pressure on land, resources and ecosystems Better quality of life and adaptive capacity due to access to electricity, enhanced supply of clean water, health & education in rural areas

Modern Biomass Fuels and Technologies

Comparative Advantages of Commercial Biomass

- Decentralized Applications (e.g. remote areas)
- Local Employment
- Environment

Factor Supply and Productivity

- Land Supply (?)
- *Labor (+)*
- Technology developments
 - ✓ Gasifiers
 - ✓ Liquids (e.g. Ethanol)
 - ✓ Increasing scale in direct combustion
 - ✓ Co-generation

Modern Biomass Fuels and Technologies

Modern Biomass Fuels and Technologies

Biomass Gasifier

- Niche & Decentralized Applications
- MW Size Equipments
- Technology R&D and Manufacturing in India
- Economics and supply-chain not yet favorable

Gosaba Island, Sunderbans

- 500 kW, 5 x 100 kW AG series Gasifiers
- Supplying 800 households
- Managed by Rural Energy Co-operative
- No Disruption till date

Bagasse Based Power Generation

- Installed Capacity: 632 MW (March 2005)
- 50 MW Size Projects
- Introduction of High Pressure Technologies in some Sugar Mills
- CDM Projects

Source: MoP, 2004

Indian Experiences with Ethanol

- India Imports 70% of oil demand annual 120 Million ton in 2004
- Subsidized petroleum products
- Ethanol introduced as a Gasoline Mix (5-10 %) in 1980's
- Mandatory use of 5 % blend in 9 states in 2001-2
- Large number of experimental studies
- Scientific studies conducted with auto industry
- Blend increased to 10%
- Crisis of Ethanol Supply in 2004
- Price of Ethanol?
- Relaxation of blending down to 5%

Bio-Diesel: Energy vs. Food Security

Energy Security

- *High oil imports contributes to balance of payment/ trade deficit*
- Oil subsidies is a major contributor to budget deficit
- Rising oil demand @ 6% annual growth rate

Food Security:

- 2.4% of Global area; 16% of population & 17% of cattle
- India is amongst the largest importers of edible oil
- Where do we find the oil for bio-diesel?
- Sustainable source of vegetable oil is to be found before we can think of bio-diesel

Bio-Diesel: Development and Climate

Development

- Bio-diesel production in wasteland may help land restoration
- High rural employment potential in seed production and oil extraction
- Energy security and improved balance of payment would enhance investments due to reduced risks

Climate:

- Sustainable seed production can mitigate carbon emissions in oil substitution
- Rural Income can enhance adaptive capacities

Preferred Material of Choice: JATROPHA?

Jatropha (Jatropha curcas, Ratanjyot, wild castor) thrives on any type of soil

- Needs minimal inputs or management; Propagation is easy
- Has no insect, pests & not browsed by cattle or sheep
- Can survive long periods of drought
- Yield from 3rd year onwards, continues for 25-30 years
- 25% oil from seeds by expelling, 30% by solvent extraction
- The meal after extraction an excellent organic manure

Waste or degraded land in India are estimated at 65 million hectares

Jatropha Plantation in India

Jatropha plant

Jatropha plantation on reclaimed desert using sewage waste water in Middle East

Indian Mission on Bio-diesel

Phase I (2003-07): Demonstration Projects

- Plantation on 400,000 hectares of land
- Seed Collection
- Oil Extraction
- Transesterification
- Blending
- Marketing

Phase II (2007-2012)

- Self Sustaining Expansion of Biodiesel
- One hectare plantation likely to produce 3.75 MT of seed, yielding 1.2 MT of oil

Employment & Income Estimates

- Estimated diesel demand in 2007: 52.33 MT
- 5% blend would require 2.62 MT Bio-diesel
- Plan for 2.2 million Ha area to be brought under Jatropha plantation by 2007
- Additional Employment opportunities for 2.4 million
- Employment opportunities to rise to 12 million by 11th plan (2012) for 20% bio-diesel blend
- Seed yield of 4 MT / Ha, gives farm income of Rs. 20,000 per Ha per year from waste lands with minimum support price of Rs. 5 per kg of seeds.
- Secondary employment in oil extraction plants

Bio-diesel vs. Diesel Emissions

B100: Pure bio-diesel

B20: Mixed bio-diesel (20% bio-diesel and 80% petroleum diesel)

Emissions	B100	B20		
Regulated Emissions				
Total Unburned Hydrocarbons	-93%	-30%		
Carbon Monoxide	-50%	-20%		
Particulate Matter	-30%	-22%		
NO _x	+13%	+2%		
Non Regulated Emissions				
Sulphates	-100%	-20%		
Polycyclic Aromatic Hydrocarbons (PAH)	-80%	-13%		
NPAH (Nitrated PAHs)	-90%	-50%		
Ozone Potential of HC	-50%	-10%		
Life Cycle Emissions				
Carbon Dioxide	-80%			
Sulphur Dioxide	-100%			

Biotechnology

Biorefining

e.g. Switchgrass

...bio-hydrogen

Biomass-Energy Crops

Hybrid Poplar

Switch Grass

Grand Challenges for Biology, Payoffs for the Nation

The Biomass Future

Waste products

Biomass

- Farm & forest residues
- Commercial biomass crops

New Biomass Crops Conventional Biomass

Carbon Dioxide

Mineral Recycle

Residues

Landfill

Wood Products and Energy or Food/Feed Chemicals cycling

Agricultural Residues

Fuel/Power/ Heat and New

Bioproducts