AIM/Energy Snapshot Tool (ESS)

AIM Training Workshop Tokyo, Japan Oct 22-27, 2007

Tomoki Ehara

Contents

Contents

Back Ground

Structure & Flow

Operation

Demand Setting

Transformation Sec

Analysis

Exercise

- Background
- Structures & Flows
- Operation
 - Demand Settings
 - Transformation Sector (Electricity, Other)
 - Analysis
 - Exercise

Тото	ki .	El	har	G
				~

Contents
Back Ground
Structure & Flow
Operation
Demand Setting 1
Transformation Sec
Analysis
Exercise

Contents

Duck of Ourio	Back	Ground
---------------	------	--------

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise

Background of development

- In LCS/SD visions developing processes, a tool with following feature would be useful
 - Clear assumptions & calculation processes
 - Easy interpretation of the results
 - Easy sensitivity analysis (assumptions can be changed manually)
 - Quick calculation
 - Overview of general energy flow (keep balance)

 Tools to describe future (ex. 2050) Energy Balance Table (EBT) in a spreadsheet: Energy Snapshot Tool (ESS)

Tomoki Ehara

Contents

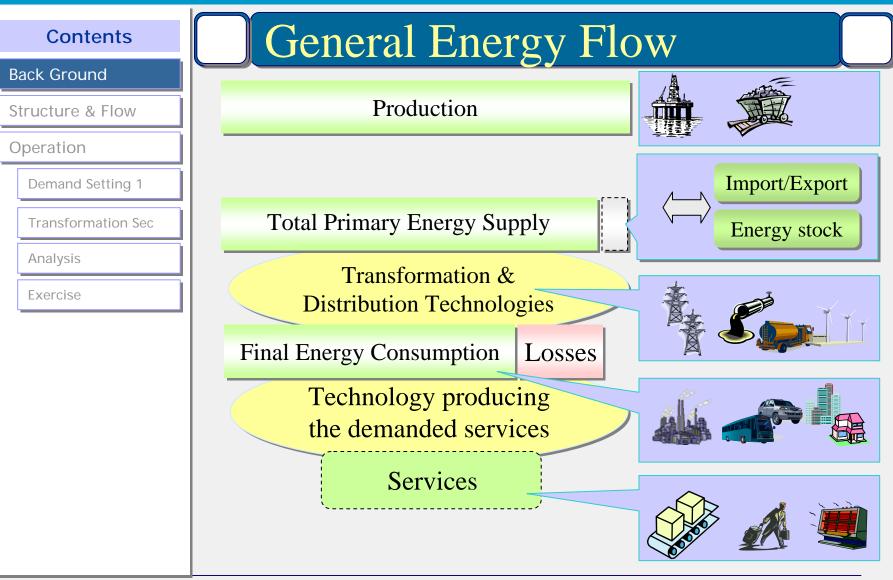
Back Ground

Structure	& Flow

0	р	е	r	а	t	İ	0	r	1
---	---	---	---	---	---	---	---	---	---

Demand Setting 1

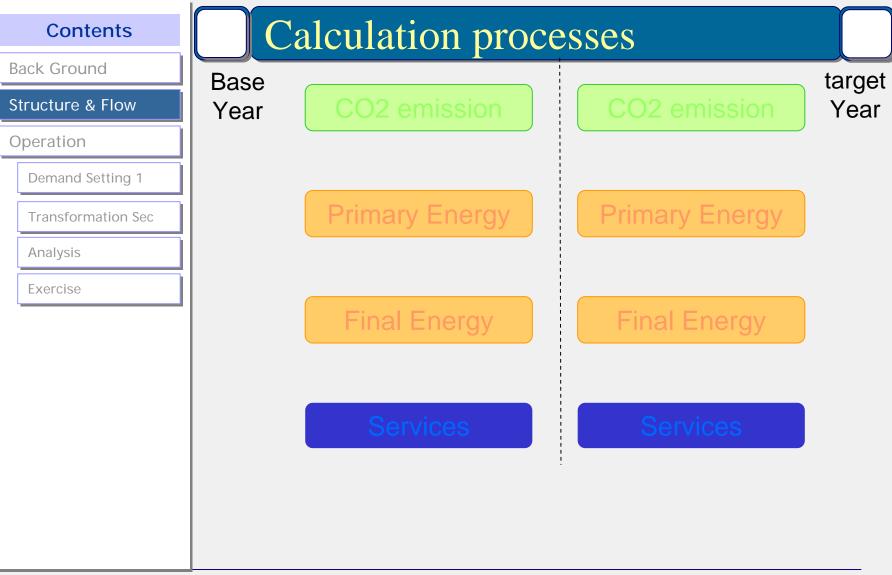
Transformation Sec	Trar	nsforr	nation	Sec
--------------------	------	--------	--------	-----

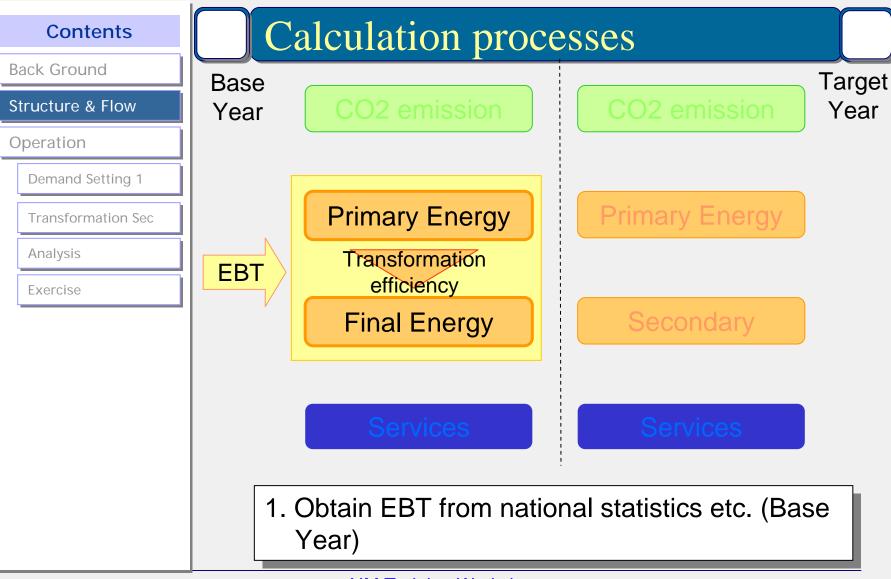

Analysis

Exercise

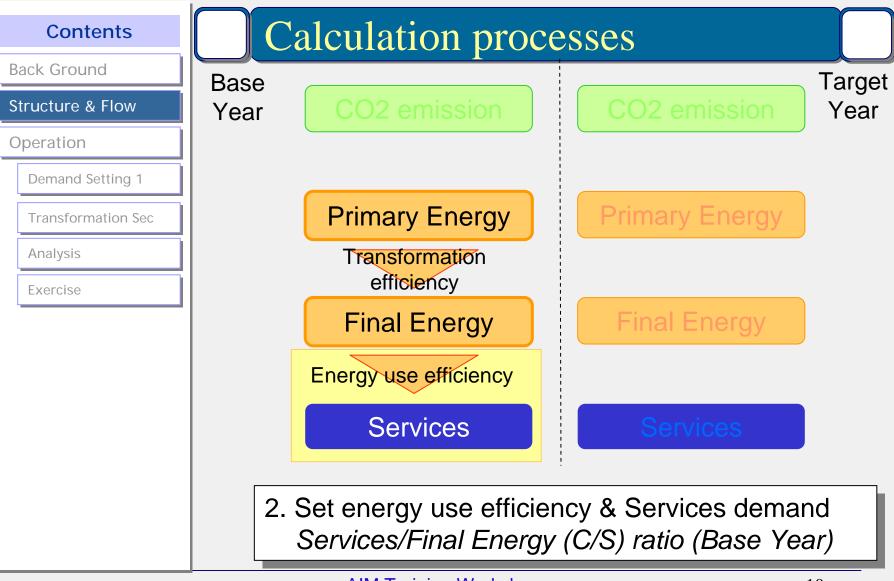
AIM/Energy snapshot tool

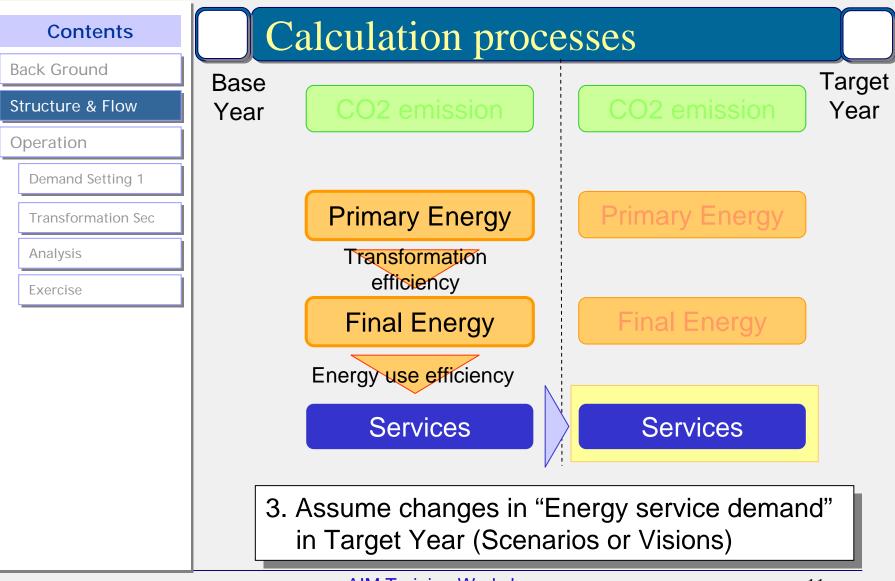
- Excel format
- Based on EBT
- Step by step approach
- The tool can be used for;
 - Developing and designing preliminary LCS/SD visions
 - "What if" analysis
 - Check the consistency among the sectors
 - Analyze the impacts of countermeasures package
 - Communication among stakeholders

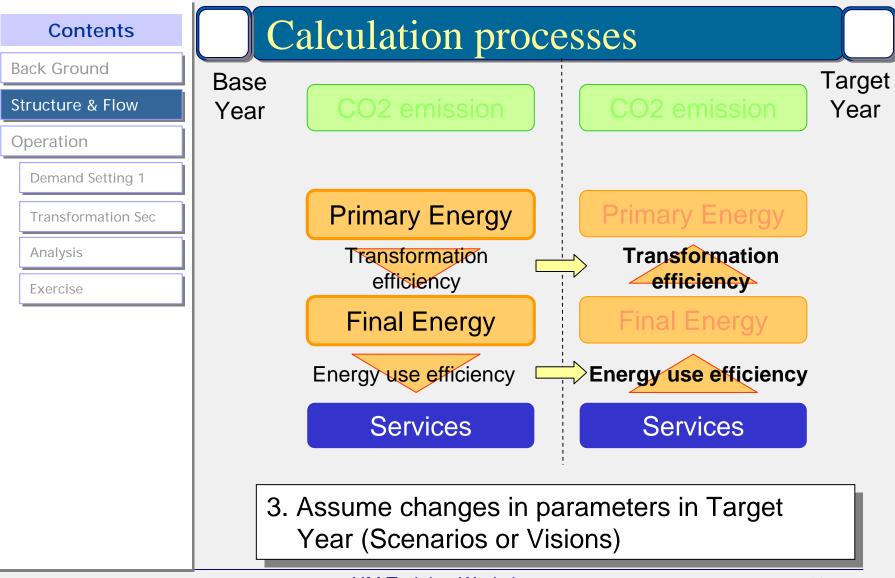

Tomoki Ehara

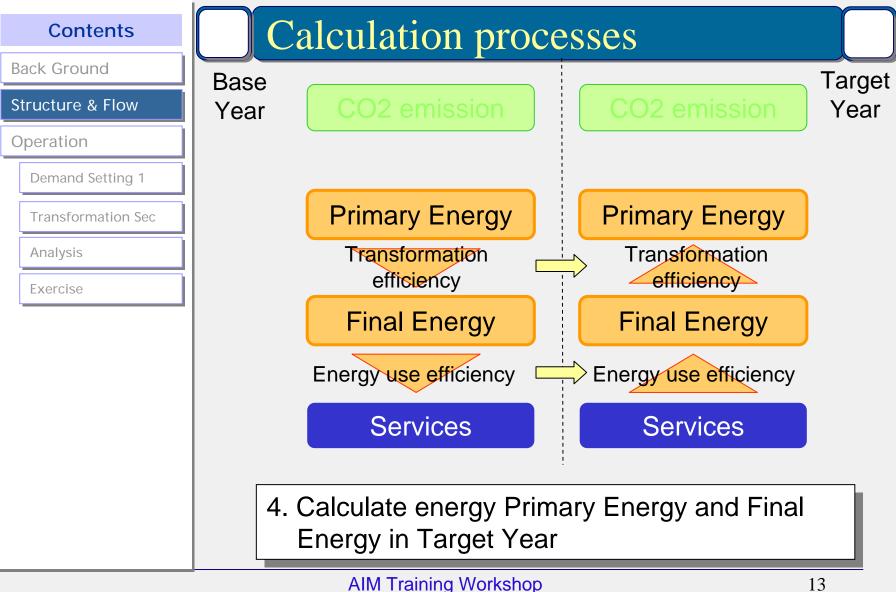

Тото	ki .	El	har	G
				~

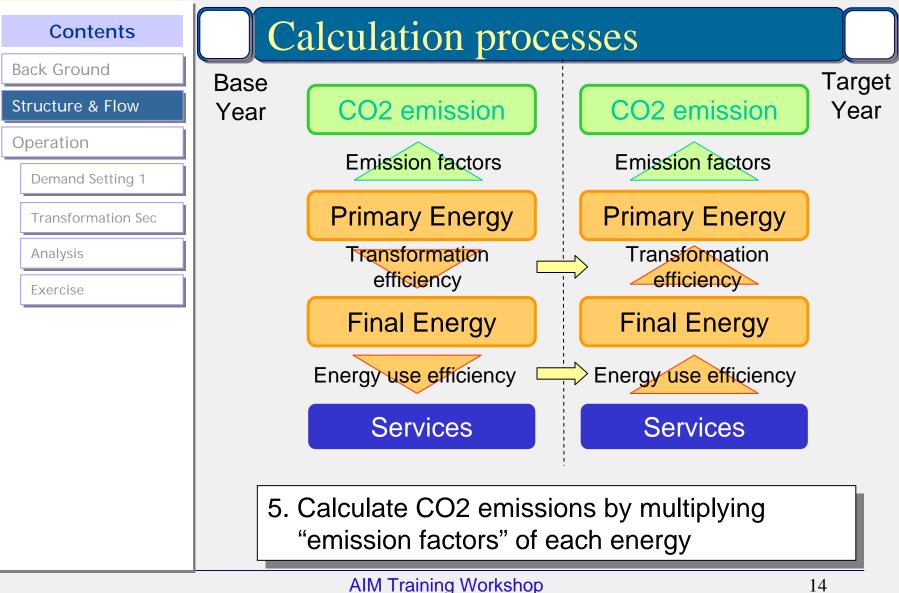
Contents
Back Ground
Structure & Flow
Operation
Demand Setting 1
Transformation Sec
Analysis
Exercise

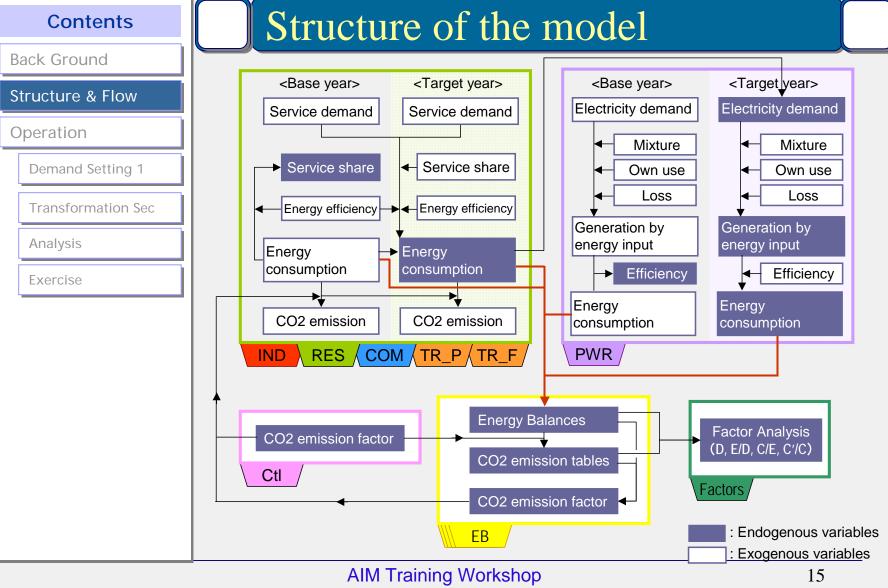

Tomoki Ehara


Tomoki Ehara


Tomoki Ehara


Tomoki Ehara

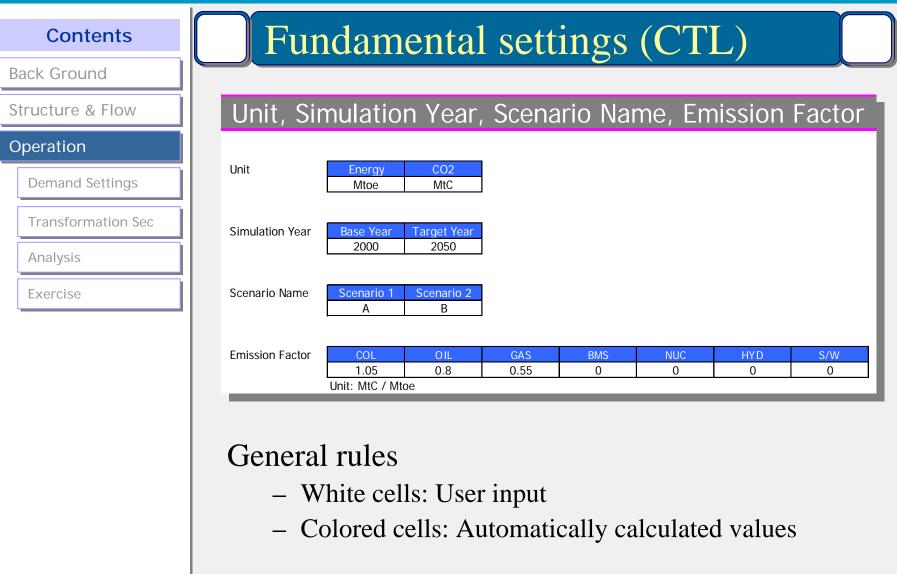

Tomoki Ehara


Tomoki Ehara

Tomoki Ehara

Tomoki Ehara

Tomoki Ehara

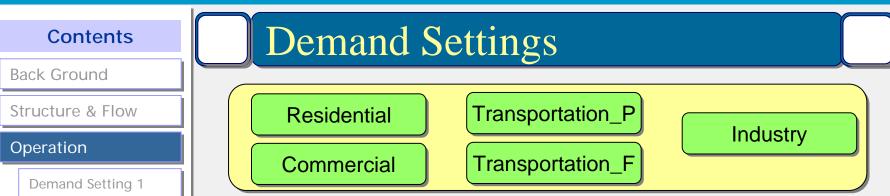

Contents	Worksheets				
ack Ground					
tructure & Flow	Name	Contents			
)peration	Title	Cover of ESS			
Demand Setting 1 Transformation Sec Analysis	CTL	Unit, simulation year, visions name and CO2 emission factor			
Exercise	RES	Residential sector			
	IND	Industrial sector			
	СОМ	Commercial sector			
	TR_P	Passenger transportation sector			
	TR_F	Freight transportation sector			

Contents	Worksheets				
Back Ground					
Structure & Flow	Name	Contents			
Operation Demand Setting 1	EB_SD	Energy balance table (Service & Demand side countermeasures)			
Transformation Sec Analysis	EB_S	Energy balance table (Service side countermeasures)			
Exercise	EB_D	Energy balance table (Demand side countermeasures)			
	EB_0	Energy balance table (No counter measures = Reference case)			
	Factors	Factors analysis of CO ₂ reduction			
	EneEms	Graphs of energy cons. and CO ₂ emissions			

		1 •		1
1	Tomol	K1	F.I	hara
-		· · ·		10110

Contents
Back Ground
Structure & Flow
Operation Demand Setting 1 Transformation Sec Analysis Exercise

Tomoki Ehara



Transformation Sec

Analysis

Exercise

Tomoki Ehara

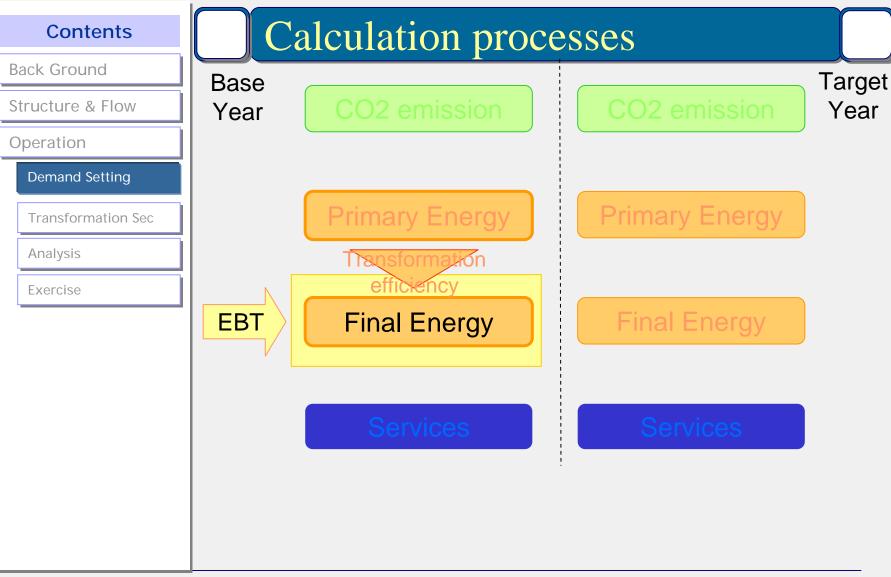
Residential sector

1 Energy service demand

					20	50				
	Unit	2000	RI	ĒF	C	М	CM/	REF		4 Energ
			A	В	A	В	А	В		Consur
Cool	Mtoe	4	4	4	4	4	90%	100%		
Warm	Mtoe	81	81	81	65	81	80%	100%		5 Emiss
Hot Water	Mtoe	55	55	55	55	55	100%	100%		Fact
Cooking	Mtoe	60	60	60	30	60	50%	100%		
Others	Mtoe	5	5	5	5	5	100%	100%		6 CO2
	Mtoe				0	0				
	Mtoe				0	0				
	Mtoe				0	0				
	Mtoe				0	0				
					0	0			REF = Reference of	case
					0	0			CM = Countermea	sure case

4-6 Energy consumption / CO2 Emission

		Unit	COL	OIL	GAS	BMS	S/W
4 Energy	2000		45	13	5	213	0
Consumption	2050 A (CM)	Mtoe	53	12	38	86	0
	2050 B (CM)		45	13	5	214	0
5 Emission	2000		1.05	0.80	0.55	0.00	0.00
Factor	2050 A (CM)	MtC/Mtoe	1.05	0.80	0.55	0.00	0.00
	2050 B (CM)		1.05	0.80	0.55	0.00	0.00
6 CO2 Emission	2000		47	10	3	0	0
	2050 A (CM)	MtC	56	10	21	0	0
	2050 B (CM)		47	10	3	0	0


2 Service Share

						2000								205	50 A (C	CM)				2050 B (C				
	UTIIL	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	S/W
Cool	-	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0	0	0%	0%
Warm	-	23%	8%	2%	48%	0%	3%	0%	16%	100%	61%	8%	2%	10%	0%	3%	0%	16%	100%	23%	8%	2%	48%	0%
Hot Water	-	14%	4%	1%	71%	0%	5%	0%	4%	100%	0%	6%	50%	30%	0%	10%	0%	4%	100%	14%	4%	1%	71%	0%
Cooking	-	7%	0%	1%	92%	0%	0%	0%	0%	100%	7%	0%	1%	92%	0%	0%	0%	0%	100%	7%	0%	1%	92%	0%
Others	-	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	0
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	0
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	0
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	0
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	0

Tomoki Ehara

Contents		
Back Ground		
Structure & Flow		
Operation		
Demand Setting		
Transformation Sec		
Analysis	Demand Setting	
Exercise		
	(Residential Sector)	

Tomoki Ehara

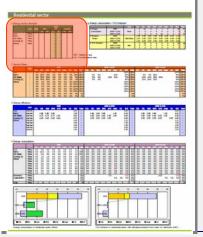
Tomoki Ehara

Contents

0. Preparation

Back Ground

Structure & Flow


Operation

Demand Se	tti	ng
-----------	-----	----

Transformation Sec

Analysis

Exercise

• Split or merge energy consumption from EBT and set the category

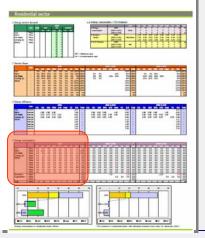
			2050					
	Unit	2000	RI	ĒF	C	М	CM/	REF
			А	В	А	В	А	В
Cool	Mtoe	4	4	4	4	4	90%	100%
Warm	Mtoe	81	81	81	65	81	80%	100%
Hot Water	Mtoe	55	55	55	55	55	100%	100%
Cooking	Mtoe	60	60	60	30	60	50%	100%
Others	Mtoe	5	5	5	5	5	100%	100%
	Mtoe				0	0		
	Mtoe				0	0		
	Mtoe				0	0		
	Mtoe				0	0		
					0	0		
					0	0		

Tomoki Ehara

Contents

Back Ground

Structure & Flow

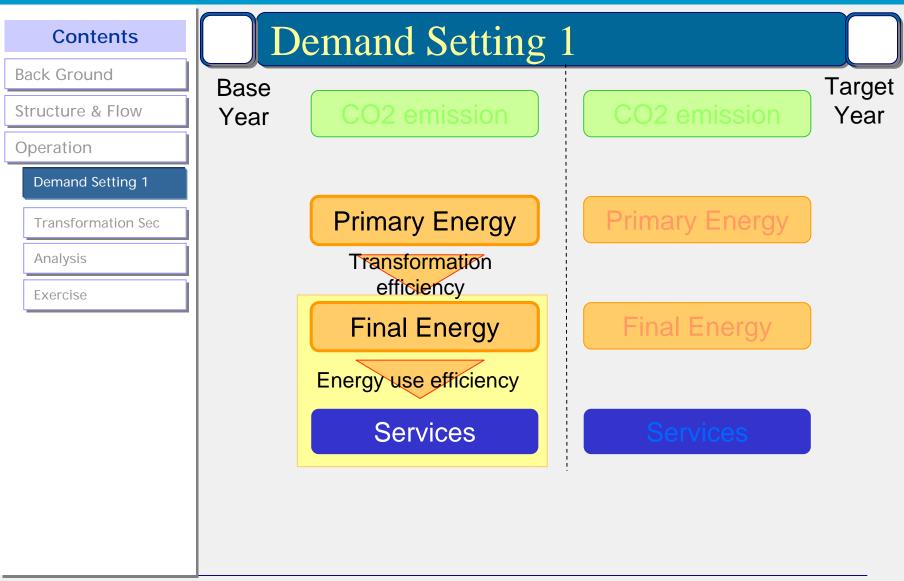

Operation

Demand Setting

	Transformation	Sec
-		

Analysis

```
Exercise
```



0. Energy Cons. in base year

- Past record of energy use in each sector
- Same structure as EBT
- Allocate energy consumption along with set categories

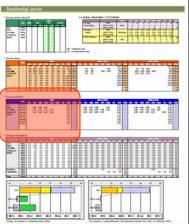
						2000				
		COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0
Warm	Mtoe	30.0	10.0	3.0	50.0	0.0	3.0	0.0	5.0	101.0
Hot Water	Mtoe	10.0	3.0	1.0	50.0	0.0	3.0	0.0	2.0	69.0
Cooking	Mtoe	5.0	0.0	1.0	113.0	0.0	0.0	0.0	0.0	119.0
Others	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Generation	Mtoe									0.0
Cogeneration	Mtoe									0.0
	Mtoe									0.0
Total	Mtoe	45	13	5	213	0	6	0	14	296
	AIM Training Workshop									

Tomoki Ehara

Contents

Back Ground

Structure & Flow

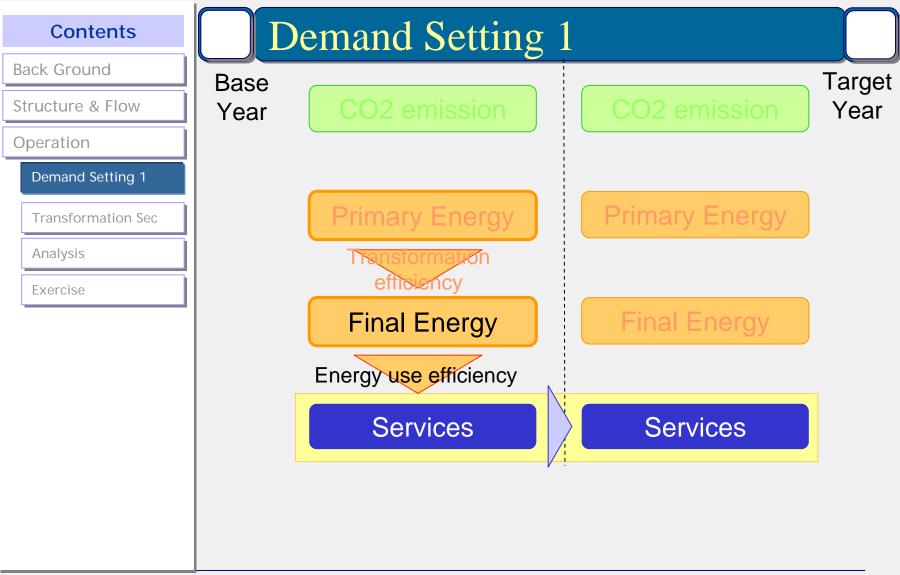

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise



2. Energy use eff. in base year

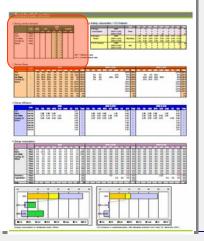
- Set energy efficiency of each energy use
 - Energy use efficiency: Ratio between the consumption of energy to service demand
 - Keep consistency
 - The value can be relative value (Base Year=1.00)

	Unit					2000				
	UTIIL	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	toe/toe								2.00	-
Warm	toe/toe	0.70	0.70	0.70	0.90		1.00		3.00	-
Hot Water	toe/toe	0.80	0.80	0.80	0.80	1.00	1.00		1.00	-
Cooking	toe/toe	0.80		0.50	0.45	0.45			0.70	-
Others	toe/toe								1.00	-
	toe/toe									-
	toe/toe									-
	toe/toe									-
	toe/toe									-
										-
										-

Tomoki Ehara

Tomoki Ehara

Contents

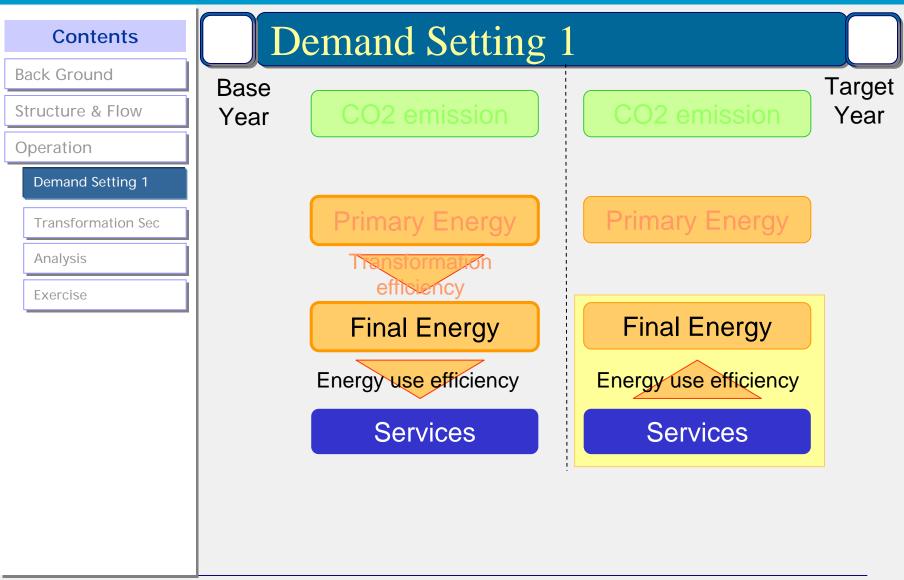

Back Ground

Operation

Demand Setting 1

Tra	nsfor	matic	n Sec

Exercise



3. Service Demand

- Service demand in base year
 - Service demand (Mtoe) = Final Energy/EE
- Assume service demand in target year
- Reference case, Countermeasure case

					20	50				
	Unit	2000	RE	F	С	М	CM/	REF		
			А	В	А	В	А	В		
Cool	Mtoe	4	4	4	4	4	90%	100%		
Warm	Mtoe	81	81	81	65	81	80%	100%		
Hot Water	Mtoe	55	55	55	55	55	100%	100%		
Cooking	Mtoe	60	60	60	30	60	50%	100%		
Others	Mtoe	5	5	5	5	5	100%	100%		
	Mtoe				0	0				
	Mtoe				0	0				
	Mtoe				0	0				
	Mtoe				0	0				
					0	0				
					0	0				

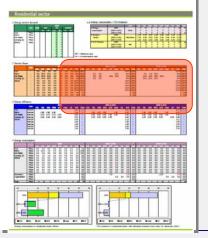
Tomoki Ehara

Contents

Back Ground

Structure & Flow

Operation


Demand Setting 1

Transformation Sec

W Ho Co

Analysis

Exercise

• Set service share to fulfill the service demand

4. Service share in target year

- Assume the technology used
- Check "total value" (=100%)

	Unit				205	50 A (C	M)			
	UTIIL	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
ool	-	0%	0%	0%	0%	0%	0%	0%	100%	100%
/arm	-	61%	8%	2%	10%	0%	3%	0%	16%	100%
ot Water	-	0%	6%	50%	30%	0%	10%	0%	4%	100%
ooking	-	7%	0%	1%	92%	0%	0%	0%	0%	100%
thers	-	0%	0%	0%	0%	0%	0%	0%	100%	100%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%

Contents

Back Ground

Structure & Flow

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise

11110 1		-	Concession of the local division of the loca	-					11 11 11 11 11	11 21	-	10.0	Lukse.	· · · · · · · · · · · · · · · · · · ·			and a second sec	
A second second	REAL COLLEGE		CERCEPTER	11251151151	CLACESCE CE	Car Contraction of the second			a 2		11212121212		322	352	122		11111 west	THE OWNER OF THE OWNER
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			15			11111111		111					111			12		
111111111111111111111111111111111111111	1		1111111111111	000000000000000000000000000000000000000	122222222	COLUCIAL STREET	CONCERNIC	CCCCCCCCCCC			1122220000011	100000000000000000000000000000000000000		122222222				

5. Energy use eff. in target year

- Set energy efficiency of each energy use in Target Year
 - Keep consistency
 - The value can be relative value (Base Year=1.00)

	Unit				20	50 A ((CM)			
	Unit	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	toe/toe								2.00	-
Warm	toe/toe	0.90	0.70	0.70	0.90		1.00		3.00	-
Hot Water	toe/toe	0.80	0.80	0.80	0.80	1.00	1.00		1.00	-
Cooking	toe/toe	0.80		0.50	0.45	0.45			0.70	-
Others	toe/toe								1.00	-
	toe/toe									-
	toe/toe									-
	toe/toe									-
	toe/toe									-
										-
										-

Contents

Back Ground

Structure & Flow

Operation

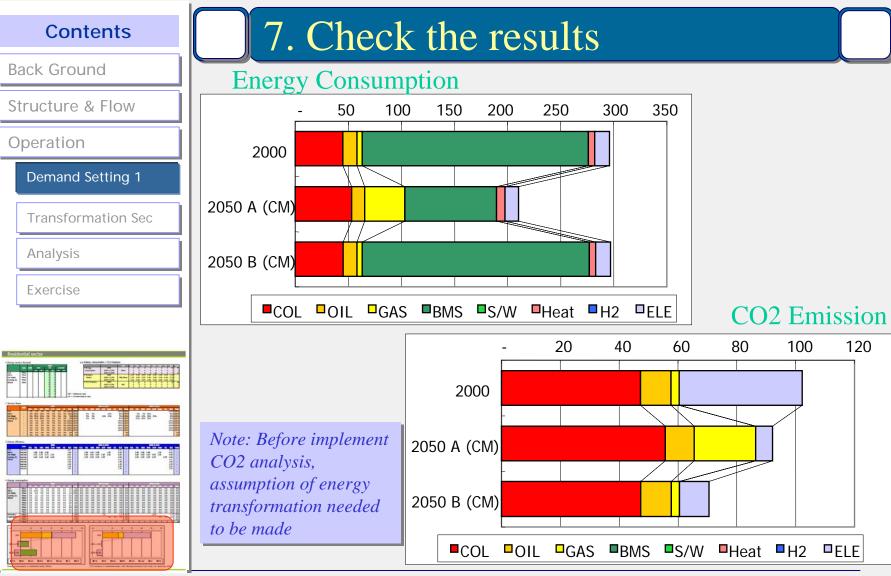
Demand Setting 1

Transformation Se

Analysis

```
Exercise
```

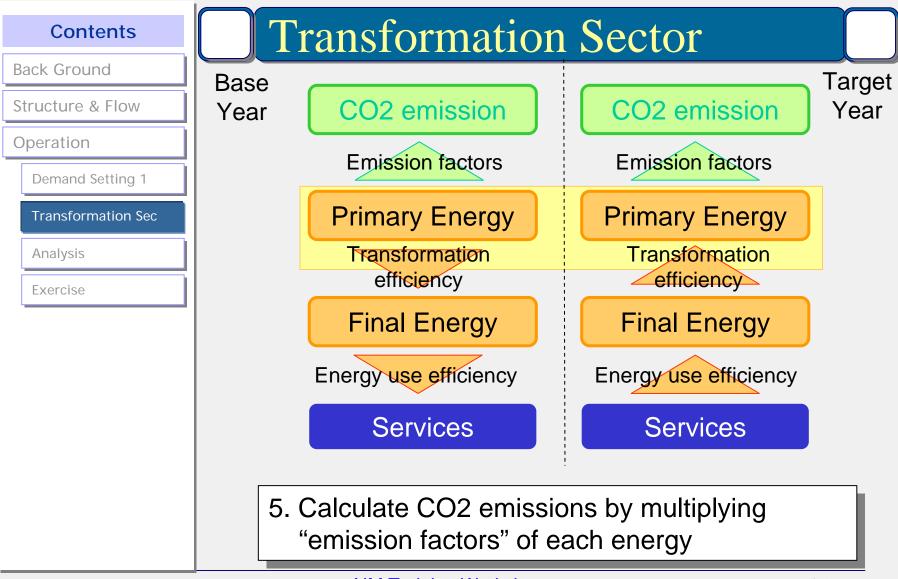
		Teacarteri	Contractor of the local division of the loca	Large S	1 144			111	122	in	111111111	1311111
	15 2			100000000000000000000000000000000000000		i u ^s		100		20 25 ²³	1000000000	I commonly
1000000						W . W .	COLUMN TO A DE COLUMNT TO A DE CO		111111111111			T DES STREET STREET


6. Energy Cons. in Target year

- Calculated automatically
- Additional Input
 - Generation: PV etc.
 - CHP: Fuel cells, Gas engine etc.

					205	50 A (C	CM)			
		COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	1.8
Warm	Mtoe	50.6	8.0	2.4	8.3	0.0	2.4	0.0	4.0	75.7
Hot Water	Mtoe	0.0	4.2	35.0	21.0	0.0	5.6	0.0	2.0	67.8
Cooking	Mtoe	2.5	0.0	0.5	57.0	0.0	0.0	0.0	0.0	60.0
Others	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Generation	Mtoe									0.0
Cogeneration	Mtoe									0.0
	Mtoe									0.0
Total	Mtoe	53	12	38	86	0	8	0	13	210

AIM Training Workshop


Tomoki Ehara

Tomol	hi	F	ha	ro
1011101	$\sim \iota$	Ľı	iui	u

Contents		
Back Ground		
Structure & Flow		
Operation		
Demand Setting 1		
Transformation Sec		
Analysis		
Exercise	Transformation Sector	
	AIM Training Workshop	34

Tomoki Ehara

Tomoki Ehara

Contents

Back Ground

Structure & Flow

Operation

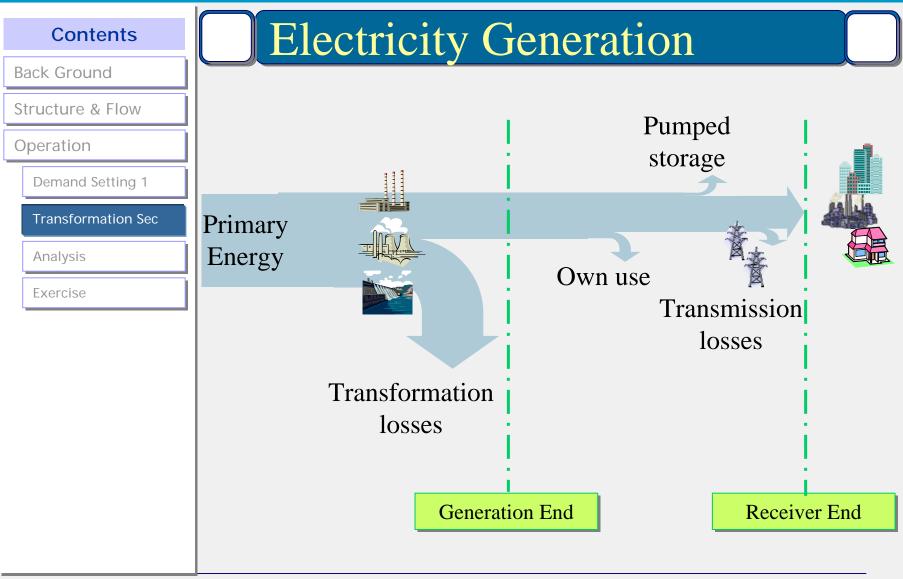
Demand Setting 1

Transformation Sec

Analysis

Exercise

Electricity Generation


• Goal: Primary energy consumed for electricity generation in target year.

Power generation sector

						20	50			
Solv	er	2000	Supply &	Demand	Only D	emand	Only S	Supply	No)
			А	В	А	В	A	В	A	В
1. Electricity dem	and at receiver	end								
	Mtoe	98	88	86	88	86	98	98	98	98
2. Difference bet	ween demand a	and supply								
	Mtoe	12.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3. Electricity supp	bly at receiver e	nd								
Electricity supply	Mtoe	103	88	86	88	86	98	98	98	98
Transmission Loss		6.84%	5.31%	5.31%	5.3%	5.3%	5.3%	5.3%	5.3%	5.3%
4. Electricity supp	by before tranm	nission								
Electricity supply	Mtoe	111	93	91	93	91	104	104	104	104
Pumped storage										
Ele. demand of	of PS Mtoe	0	1	1	0	0		1	0	0
Efficiency		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Generation of	PS Mtoe	0	1	1	0	0	1	1	0	0
Own use										
Own use in pl	ant Mtoe	6	4	4	5	5	5	4	6	6
Own use rate										
COL		6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
GAS		4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%
OIL		5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%
NUC		4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%
HYD		0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%		0.5%
HYD(P)		0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%
GEO		8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%

AIM Training Workshop Ohyama Hall, NIES, Ibaraki, Japan, Oct 22-26, 2007 36

Tomoki Ehara

AIM Training Workshop Ohyama Hall, NIES, Ibaraki, Japan, Oct 22-26, 2007

Back	Ground
------	--------

Structure & Flow

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise

Electricity Generation

- Data setting for reference year
 - Electricity demand at receivers end (EBT or "EB_SD")
 - Electricity Transmission (& distribution) losses (EBT)
 - Efficiency of pumped storage (Def: ratio between consumed energy while pumping and generated energy)
 - Own use rate of electricity plant (EBT; Only aggregated data. Detailed information needed)
 - Electricity supply at generation end (EBT)
 - Primary Energy Consumption (EBT)

Back Ground

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise

Electricity Generation

- Data setting for target year (visions)
 - Transmission losses
 - Efficiencies of pumped storage
 - Own use rate
 - Mixture of energy
 - Thermal efficiency
- Click "Solver"!!
 - "Electricity supply at generation end" is controlled automatically so that the electricity demand of the end-user would be fulfilled
 - Primary energy supply for electricity generation is calculated
- Check if differences between demand & supply; 0
 AIM Training Workshop 39
 Ohyama Hall, NIES, Ibaraki, Japan, Oct 22-26, 2007

Contents

Back Ground

Structure &	& Flow
-------------	--------

Operation

Demand Setting 1

Transformation Se	
	1
	~

Analysis

Exercise

Note: Solver

The Solver Add-in is an Excel add-in (add-in: A supplemental program that adds custom commands or custom features to Microsoft Office.) program that is available when you install Microsoft Office or Excel. To use it in Excel, however, you need to load it first.

1.On the **Tools** menu, click **Add-Ins**.

- 2.In the Add-Ins available box, select the check box next to Solver Add-in, and then click OK. Tip If Solver Add-in is not listed, click Browse to locate it.
- 3.If you see a message that tells you the Solver Add-in is not currently installed on your computer, click **Yes** to install it.
- 4.Click **Tools** on the menu bar. When you load the Solver Add-in, the **Solver** command is added to the **Tools** menu

Contents

Back Ground

Structure & Flow

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise

Other energy transformation

- Click "EB_SD" sheet
- EBT (demand) is there !!

Name	Contents
EB_SD	Energy balance table (Countermeasures in energy enduse & transformation sector)
EB_S	Energy balance table (Countermeasures in energy transformation sector)
EB_D	Energy balance table (Countermeasures in energy enduse sector)
EB_0	Energy balance table (No counter measures = Reference case)

AIM Training Workshop

Operation

Demand Setting 1

Transformation Sec

2000

Analysis

Exercise

Other energy transformation

- Excluding electricity generation (already calculated)
- CCS: Energy use for CCS ^(a) & amount of carbon captured in appropriate unit ^(b).
- Heat & Hydrogen: Put the negative value of heat used in demand side ^(c) and inputs of feedstock
- Coal/Oil/Gas: Losses during refining processes etc.

2	000												
		COL	OIL	GAS	BMS	NUC	HYD	S/W	Heat	H2	ELE	Total	'90=100
E	ne <u>rgy</u> Balances (Mtoe)												
	Power Gnr.	275	12	2	1	4	19	0			-100	213	
	CCS					(a	l)					0	
	Heat	35	4	1			/		-25			15	
	Coal/Oil/Gas	31	3									34	
	Hydrogen								<u> </u>			0	
	Industrial	177	69	12	0			0	19	0	63	339	
	Residential	45	13	5	213			0	6	0	14	296	
	Commercial	0	15	9	0			1	0	0	22	46	
	Trans. Prv.	6	67	0	0			0	0	0	1	74	
	Trans. Frg.	0	0	0	0			0	0	0	0	0	
	Enduse	227	164	26	213			1	(23)	0	100	756	
	Total	569	182	28	214	4	19	1	0	0	0	1,017	
	Feedstock in total		2										
E	mission Factor (MtC/Mtoe)	1.05	0.80	0.55	0.00	0.00	0.00	0.00	-	-	-		
C	O2 Gnr. (MtC)	597	145	16	Q	0	0	0	_	_	-	757	267
C	O2 Dsp. (MtC)	\bigcirc							-	-			
C	O2 Ems. (MtC)	597	144.6	16	0	0	0	0	-	-	-	757	267

		1.		1	
7	Tomol	Z T	H	na	ra
-	. 011101	ve		icii	^u

Contents	
Back Ground	
Structure & Flow	
Operation	
Demand Setting 1	
Transformation Sec	
Analysis	A 1 •
Exercise	Analysis
	AIM Training Workshop

Tomoki Ehara

Back Ground

Structure & Flow

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise

Factor analysis

• Extended Kaya Identity

 $C = D \times \frac{E}{D} \times \frac{C'}{E} \times \frac{C}{C'}$ $\frac{\Delta C}{C} = \frac{\Delta D}{D} + \frac{\Delta (E/D)}{(E/D)} + \frac{\Delta (C'/E)}{(C'/E)} + \frac{\Delta (C/C')}{(C/C')} + \text{Cross term}$

- D: Driving forces (service demand)
- E: Energy Consumption

C': CO_2 emission without measures in transformation sector

C: CO₂ emission with measures in transformation sector

E/D: Energy Intensity

C'/E: CO₂ intensity in end-use sector (without measures in transformation sector)

C/C': Change of CO_2 intensity by measures in transformation sector

Contents

Back Ground

Structure & Flow

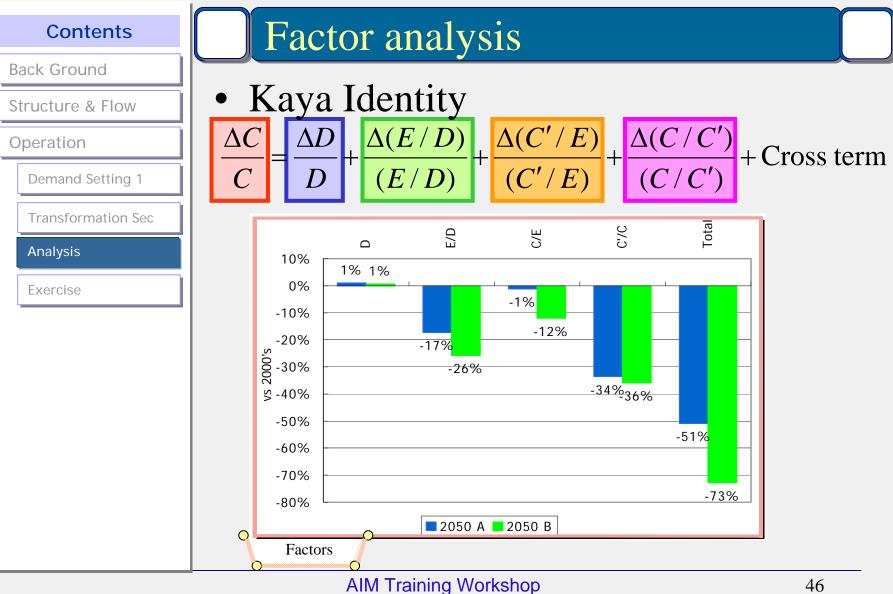
Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise


Data input for factor analysis

- Differentiate the contribution of CO2 reduction from supply side and demand side
- Consistent visions required

Name	Contents
EB_SD	Energy balance table (Countermeasures in energy enduse & transformation sector)
EB_S	Energy balance table (Countermeasures in energy transformation sector)
EB_D	Energy balance table (Countermeasures in energy enduse sector)
EB_0	Energy balance table (No counter measures = Reference case)

AIM Training Workshop

Tomoki Ehara

Tomoki Ehara

	Contents	
B	ack Ground	
S	tructure & Flow	
С	peration	
	Demand Setting 1	
	Transformation Sec	
	Analysis	
	Exercise	
_		

Please do not hesitate to ask Ohyama Haci Echaloki Japa, 6 2, 207, 2007

Tomol	hi	F	ha	ro
1011101	$\sim \iota$	Ľı	iui	u

Contents
ck Ground
ucture & Flow
peration
Demand Setting 1
Transformation Sec
Analysis
Exercise

Back Ground

Structure & Flow

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise

Data preparation

- 1. Download data (EBT of your country) on your Personal Computer (Table format)
- 2. See items in row & columns, and check the definitions of the terms
- *3. Create detail dataset of Residential Sector and Passenger Transportation Sector using "Reference data.xls" in dataset folder.*
- 4. Create dataset of Commercial Sector and Industial sector, Transformation Sector
- 5. Fill in energy balance table in ESS tool
- 6. If data is inappropriate

Tomoki Ehara

Contents

Back Ground

Structure & Flow

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise

Split energy cons. by category

ROAD											
Light Veh			cle				Other Vehicle				
			Autos	Light trucks	Three wheels	Two wheels		Buses	Heavy trucks	Medium trucks	Commerc ial trucks
			TRT	TRL	TRE	TRW		TRB	TRH	TRM	TRC
Coal	TRACOA										
Methanol	TRAMET	0%					100%	100%			
Ethanol	TRAETH	0%					100%	100%			
Natural gas	TRANGA										
LPG	TRALPG	60%	70%	30%)		40%	30%	30%	40%	
Gasoline	TRAGSL	80%	60%	39%	1%	1%	20%	10%	10%	40%	40%
Aviation Gasoline	TRAAVG										
Jet Kerosene	TRAJTK										
Diesel	TRADST	15%	20%	80%	1		85%	20%	20%	30%	30%
Heavy Fuel Oil	TRAHFO										
Electiricity	TRAELC										

		Space heating	Space cooling	Hot water heating	Ireezers	dryer	Cooking	washers	Dish washers	Other energy uses
		RH1	RC1	RHW	RRF	RCD	RK1	RCW	RDW	ROT
Natural gas	RESNGA	40%		40%			20%			
Diesel	RESDST	50%		40%						
Heavy fuel oil	RESHFO									
Kerosene	RESKER	30%		30%			20%	20%		
Coal	RESCOA	70%		25%			5%			
LPG	RESLPG	30%		40%			30%			
Biofuels	RESBIO	30%		35%			35%			
Electiricity	RESELC	10%	10%	10%	15%	1%	5%	1%	1%	
Heat	RESHET									
Geothermal	RESGEO									
Solar	RESSOL									

Tomoki Ehara

Contents

Back Ground

Structure & Flow

Operation

Demand Setting 1

Transformation Sec

Analysis

Exercise

Recommended category for P-trans.

- Motorbike
- Car
- Bus
- Railway
- Aviation
- Maritime