

Center for Integrated Studies on Climate Change and the Environment

Federal University of Rio de Janeiro - Brazil

www.centroclima.org.br

# Residential and Transportation scenario for Low Carbon Society study Brazil Case

# **2007 AIM Training Workshop**

## Marcelo Buzzatti

Marcelo.Buzzatti@terra.com.br Tsukuba, Japan October 26, 2007

# Contents

- Country Background information
- Narrative scenario
- Results
- Feedback on ESS



# Key information

|                                             | 2000             | 2006             |
|---------------------------------------------|------------------|------------------|
| Population, total                           | 173.9<br>million | 188.7<br>million |
| Population growth (annual %)                | 1.5              | 1.2              |
| GNI per capita, Atlas method (current US\$) | 3,870.0          | 4,730.0          |
| GDP (current US\$)                          | 644.5 billion    | 1.1 trillion     |
| GDP growth (annual %)                       | 4.3              | 3.7              |
| Inflation, GDP deflator (annual %)          | 6.2              | 4.3              |
| Agriculture, value added (% of GDP)         | 5.6              | 5.1              |
| Industry, value added (% of GDP)            | 27.7             | 30.9             |
| Services, etc., value added (% of GDP)      | 66.7             | 64.0             |

Source: World Development Indicators database, April 2007

# Key issues with data and contextual information

### **Reliability of Economic Data**

- hyperinflation from late 70's to 1994
- uncertainties on input/output coefficients, price elasticities, interest rates
- skewed income distribution
- informal economy

## **Specificities of National Circumstances**

• energy resources endowment: relevance of hydropower (250,000 MW, only 20% tapped) and of biomass (wood, charcoal, ethanol from sugarcane, vegetal oils)

• relevance of emissions from land-use change : deforestation is the most important source in the short term

## **GHG** Emissions

## **1st National Communication: Inventory of**

### **Brazilian GHG Emissions in 1990-1994**

•CO2 emissions from LULUCF = three times higher than emissions from the energy system

•GHG emissions from cattle raising activities: nearly equal to CO2 emissions from fossil fuels

#### Medium and long-term prospects:

•CO2 emissions from energy will be dominant

## **Relevance of Biomass in Brazil**

- Share in total energy supply = 30% (2004);
- Main biomass energy resources: wood, charcoal, sugarcane bagasse, rice husks, ethanol from sugarcane, vegetal oils, biodiesel;
- Agricultural land availability:
  - Land used by agriculture sector: 50 million ha;
  - Land used by sugar cane crops: 5 million ha;
  - Estimated land for ethanol production: 2.5 million ha;
  - Total Brazilian agricultural land: 140 million ha (exclusive of land suitable for forest plantations);
  - Land still available for agriculture: 90 million ha.

# Socio economic Vision

### Lifestyle and Mindset

- Community development
- Move to diversity of activity, doing work to serve community
- Sustainable consumption, local markets, trade of goods and services.
- Full access to fixed dwellings, clustered housing and services, larger floor space
- Economy and Industry
  - Moderate growth. Commodity-driven economy, agricultural sector strengthened, internal markets
- Population and Household
  - Moderate increase (moderate variant on UN Population prospect)
  - Fewer large households
- Land use and Infrastructure
  - Decentralized agricultural production, local town-development
  - Reliance on IT and telecoms, local production of energy and diversity of sources
  - Establishing at least on viable alternative to individual transport systems, use of freight for transporting goods
  - Local town development, protection of ecosystems

# **Overall** assumptions

- Focus on ESS model utilization rather than 'polishing up' data
- Simple and basic settings
  - Little knowledge of model
  - Poor data on residential and transport (house hold appliances passengerkm)
- Main drivers considered for mitigation
  - Efficiency
  - Biomass and Solar energy
  - Transportation modal shift from individual to mass

## General parameter settings used

- Population Growth total of 48% medium variant of UN population prospect
- Capita per household 2,6

# Key Residential parameters used

- 118% increase in number of households demographic drive -> choice to present BAU scenario
- 10 to 20% hold rate increase in main services
- 10 to 25% service loss decrease in main services
- Average 2x **performance increase** in energy efficiency
- Shift to biomass and solar

# Key Residential Results



Total Energy consumption reduction

- 61% from BAU
- 11% from base year



- 71% from BAU
- 38% from base year



# Key Passenger Transportation parameters used

- 8% trip generation reduction
- 37% increase in number of trips demographic drive -> choice to present BAU scenario
- Modal shift from individual to mass transportation

|          | Share % |       |         |             |          |
|----------|---------|-------|---------|-------------|----------|
| Scenario | Car     | Bus   | Railway | M a ritim e | Aviation |
| BAU      | 40,4%   | 38,6% | 0,9%    | 0,1%        | 1,2%     |
| Green    | 20,0%   | 41,0% | 10,0%   | 5,0%        | 5,0%     |

- Average 2x **performance increase** in energy efficiency
- Shift to biomass, electric and little H2

# Key Passenger Transportation Results



Total Energy consumption reduction

- 55% from BAU
- 38% from base year

Total CO2 emission reduction

- 75% from BAU
- 67% from base year



# Feedback and Suggestions for ESS focus on the Usability side

- Great potential on interactivity scenario discussion
- Create templates for ESS
  - Usage of Japan ESS sheet can induce errors until all data is fully reviewed.
  - Template more suitable for developing countries
- Built in data validation
- Data entry prioritization (which sector? power, industry, etc...)
  - Enable early checks to be performed
  - Intermediate results can be obtained before model is final
- Additional support for cases where each data is poor or unavailable
  - Ok with purchased data, focus on estimation techniques
  - ExSS?