NIES AIM Training exercise

LCS Scenario Development on Household and Transport sectors in China

Zhu Xianli Tian Jing Zhang Xiaoxi

Narrative Description of China Scenario

- A harmonious and 'well-off' society
- Balancing human activities and natural resources
- The majority of the people living in cities, which are the hubs of industrial and social activities. Meanwhile, people living in rural areas also enjoy quality and convenient public services and clean environment.
- Two scenarios for 2050: reference scenario and countermeasure scenario
- Countermeasure scenario: a combination of the 'Doraemon' vision and the 'Satsuki & Mei' vision.
- Reference scenario: business as usual, few additional policy intervention for fuel mix cleaning and energy efficiency improvement

Quantification of China Scenario in 2050

Year	Unit	2005	2050
Population	Mil.	1307.56	1577
Household	Mil.	376.21	585.74
Average family members		2.96 Urban 4.08 Rural	2.5 Urban 3.5 Rural
Land use			
Urban Population rate	%	43	80
Forestry area	%	18.21	26
Access to Electricity	%	98	100
Share of detached house	%	50	20
Floor space of houses	m²/person	28.69	30
Floor space of offices	m²/person	6	7
Real GDP	bn US \$	2299.45	17552
GDP Share of Industry			
Primary	%	12.6	5
Secondary	%	47.5	40
Tertiary	%	39.9	55

Grounds for Parameters

- Population: total population grows from 1307 mil. to 1557mil (official estimate)
- Household: size decrease, number of household increase
- Economic Growth: continue rapid growth, but the growth speed will gradually slow down (1998-2005: 9.2%; 2006-2020: 6.4%; 2021-2035: 4.5%; 2036-2050: 3%)
- Urbanisation: currently 43%, rising at around 1 percentage point per year, by 2050, urbanisation will complete, with 80% of the population living in cities
- Forest coverage: China has made significant efforts on afforestation and reforestation, forest coverage grew from 12% in 1980 to 18.2% in 2005. Government targets: 21% in 2020 and 26% in 2050
- Electricity supply access: By 2005, over 98% of the households have access to electricity supply. Due to urbanisation and income level increase, by 2050, all households will have electricity supply.
- Energy for cooking and heating: currently a large share of rural households rely on traditional biomass as the main fuel for cooking and heating, in urban areas, many households use coal for cooking and space heating. It is projected that by 2050, electricity, natural gas, as well as district heating will be available to all households.

Residential - Parameters

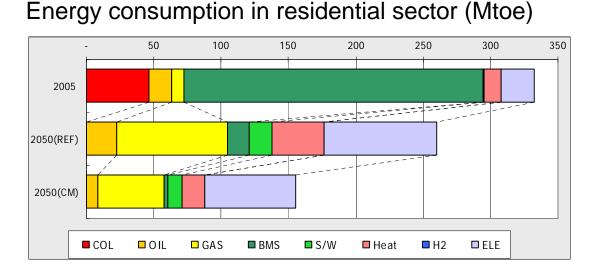
1 Energy service demand

					20	50		
	Unit	2005	RE	H	Cľ	M	CM/	REF
			А	В	А	В	A	В
Space heating	Mtoe	52	64.24	64.24	24	64	38%	100%
Space cooling	Mtoe	5	6.45	6.45	3	6	40%	100%
Hot water heating	Mtoe	12	23.80	23.80	17	24	71%	100%
Cooking	Mtoe	39	65.58	65.58	52	66	80%	100%
Electrical appliances	Mtoe	13	39.67	39.67	36	40	90%	100%

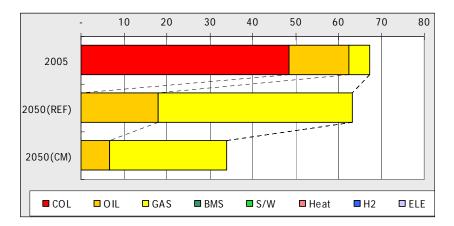
Service Share

	Lisit					2005							205	50 A (C	.M)							- 20	50(ref))			
	Onic	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE Total	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	s/W	Heat	H2	ELE	Total.
Space heating	-	24%	7%	996	32%	0%	18%	0%	10% 100%		10%	10%	10%		50%		20%	100%		10%	10%	20%		50%		10%	100%
Space cooling	-	0%	096	096	0%	0%	096	0%	100% 100%								100%	100%								100%	100%
Hot water heating	-	996	2196	696	52%	796	096	0%	5% 100%		5%	20%		1596	30%		30%	100%		596	30%		5%	3096		30%6	100%
Cooking	-	17%	996	196	72%	096	096	0%	296 10096		5%	45%					50%	100%		1096	50%					40%	100%
Electrical appliances	-	096	096	096	0%	096	096	0%	100% 100%								100%	100%								100%	100%
																		0%									
																		0%									
																		0%									
																		0%									
																		0%									
																		0%									096

Energy efficiency


	Unit					2005								20	50 A (C	IM)							2	2050(re)			
	Onic	COL	OIL	GAS	BMS	_S/₩	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	_S/₩	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Space heating	hantan	0.45	0.68	0.68	0.23	0.00	0.76	0.00	2.76	-	0.75	0.90	0.90	0.90		1.00		6.00	-	0.65	0.80	0.80	0.80		1.00		5.00	-
Space cooling	towne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.13	-								6.00	-								5.00	-
Hot water heating	towne	0.45	0.56	0.56	0.23	1.00	1.00	0.00	0.47	-	0.75	0.95	0.95	0.95	0.95	1.00		5.00	- 1	0.65	0.85	0.85	0.85	0.85	1.00		5.00	-
Cooking	toettoe	0.40	0.45	0.45	0.23	0.34	0.00	0.00	0.53	-	0.55	0.55	0.55	0.55	0.55			0.75	-	0.50	0.50	0.50	0.50	0.50			0.65	-
Electrical appliances	footine.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	-								1.10	-								0.90	-
										-									-									-
										-									-									-
										-									-									-
										-									-									-
										-									-									-
										-									-									-

Residential – Ground for Parameters



- Due to lack detailed data about the energy efficiency performance of different kind of electrical appliances, to simplify calculation, we combine lighting, TV, fridge, etc. under the sub category of electrical appliances. So only 5 items for household energy service demand: heating, cooling, hot water, cooking and electrical appliances
- The demand for energy service will see significant increase from the base year
- Under the countermeasure scenario, the demand of space heating and cooling will be much lower than the reference scenario, because of better insulation of housing
- In the base year, traditional use of biomass is major fuel for heating and cooking among a large share of the households, but by the target year, there will be little direct use of biomass among households

Residential – modeling results

CO2 emission in residential sector without allocated emission from heat, H2, electricity (MtC)

The intervention measures not only include technology measures, but also include demand influencing measures, which mainly through influencing housing insulation.

Passenger transportation – parameters

3 Bhergy service demand

				2050			
	Unit	2005	PLF*	ъ.	CH PH		4 6 10 9
			A 1	A 1	A 0		Carou
Matalaka	8 prt-m	- 31	92°	510	30%		
ca	a prive	516	90.5	652	70%		3 Emps
tur.	B prim	385	5,255	5,071	22		Pad
rahar	8 ptm	606	4,341	3,819	1.27%		
avatilan	8 ptm	204	1,047	3.53	30%		6 CC2
Natine	B prim	,	32	- 36	70%		
	1						
	1						
	1					PLF = Pcformer ca	E.
						CN = Cautomeau	C 08.0

4-6	Brer a ¹	consumption	1002	Breission
-----	----------------------------	-------------	------	-----------

		Unit	COL.	OL.	GAS -	BNS	500	Heat	H2	815	Total
4 brange	200			22						2	29
Consumption	2000 A (CDV)	NLac		20							42
	2050 B (CPV)										0
3 Emesion	2003		18	0.20	0.33	0.00	0.00	0.00	0.00	4911	-
Pada	2000 A (CPV)	NUC/Mise	1.05	0.20	0.33	0.00	0.00	0.00		1.19	-
	2050 B (CPV)		1.05	0.20	0.33	0.00	0.00	0.00	0.00	1.19	-
6 CO2 Emession	2003			13						GP LET 1	49.011
	2000 A (CPV)	MUC		15							- 29
	2000 B (CPV)		0							0	0

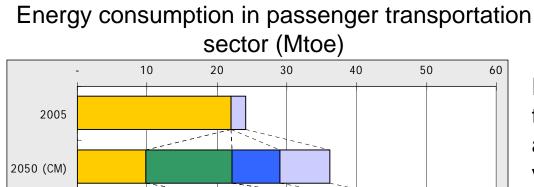
2 Service Share

	Unit					2005								2020	Anada	na io							202	10-200	1010			
		64	OL.	GAS	BNS	50%	Heat	H2	5	r al a	ß	OL.	245	BNS	504	Heat	H2	Ę	Total	ß	OL.	CAS :	BNS	50%	Heat	H2	Ę	Tatal
Natable	-	3	Б	3	3	3	5	3	5	Ē		5		þ				þ	ШP				Ę					
ca 👘	I - I	676	100%	- 6%	- 17 6	- 17 2	17 8	17%	676	100%		30%		272			37 2		100%				100%					100%
bus.	I -	676	100%	- 6 76	- 17 6	- 17 2	17%	17%	676	100%		30%		272			37%.		100%				100%					100%
salwar	I - I	6.00	17%	- 6%	- 6%	- 6 %	676	17%	100%	100%				276			are.	60%	100%				100%					100%
avation	I - I	676	100%	- 6 %	- 17 6	- 17 2	17 8	17%	676	100%		10076							100%				100%					100%
Natine	I - I	6.00	loos -	- 6 %	- 17 6	- 17 2	17%	678	676	100%		37 %		27%					100%								100%	100%
	I - I	676	- 17 6	- 6%	- 6%	- 6 %	676	17%	676	- 67 2									- 67 2				100%					100%
	I -	676	17%	- 6 76	- 17 6	- 17 2	17%	17%	676	- 67 2									- 67 2		10073							100%
	I - I	676	17%	- 6 %	- 6 %	- 17 2	676	an a	676	- 6 76									678									. IP6
	- I	0%	- 07%	- 6 76	- 17 2	- 17 2	676	17%	676	- 17 2									- 17 2									. DP3.
	-	0%	17%	072	- 17 2	- 17 2	078	17%	076	- 17%									.									. IP3.

3 Brengy effidency

	Unit					2002								2050	Anim	10 IO							204	0.0-500	10 D			
	COLOR 1	84	OL.	GAS	BMS	500	Heat	H2	ELE:	Total	001	OL.	GAS	BNS	500	Heat	H2	ELE:	Total	84	OL.	GAS	BNS	500	Heat	H2	HE:	Total
Natalika	٩ -		Е		Е			58	588	-		2.50		2.30				БШ	-		ŚШ		<u>5</u> .00			4.00		
ca -	₩ - 1.0		1.00		1.00			5.00	5.00	-		2.30		2.30			A 100	Бm.	-		₹3.m		73 m			9.00 I	5.00	-
tan.	123-1 0		1.00		1.00			5.00	5.00	-		2.30		2.30		I	A .00	Бш.	-		₹3.m		S 10			9.00 I	5.00	-
sahar 👘	TC-1 0		1.00		1.00			5.00	5.00	- 1		2.30		2.30		- I	4 .00	Б.m	-		₹s.m		<u>s.m</u>			4.00 I	5.00	i - 1
avation	Ъ.=I.D		1.00		1.00			5.00	5.00	- 1		2.30	1	230 230 230		1	A .00	Бш.	-		₹s.m		S.m.			9.00 I	5.00	- 1
Natine	TC-1 0								1.00	-								2.00	-							1.00	2.00	-
																										1.55		i - 1
																										1.30		i - 1
																												- 1
																			-									- 1
										-									-									- 1

2005; alfueld lacemeters: 0.0246 tag/10000 trkm, electrificity lacemeters: 111.2 kWky10000trkm


4 Energy consumption

						2002								2020	Anaan	3 10							2020	10-2000				
		COL.	OL.	GAS	BNS.	5,00	Heat	H2	BLE I	a.a	COL.	OL.	GAS	BNS .	500	Heat	HIZ	BLE I	T at at	COL.	OL.	GAS .	BNS.	500	Heat	HI2	BLE	T al.a
Natable	Ē	0.0	50	89	80	89	80	60	0.0	5	0.0	40	0.0	0.2	0.0	0.0	80	0.2	10	0.0	0.0	0.0	80	80	89	80	0.0	0.0
CA	NLac	0.0	11.2	0.0	0.0	0.0	0.0	0.0	0.0	11.2	0.0	43	0.0	1.2	0.0	0.0	1.2	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ten.	NLac	0.0	4.1	0.0	0.0	0.0	0.0	0.0	0.0	4.1	0.0	43	0.0	1.2	0.0	0.0	1.2	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
sahar 👘	NLac	0.0		0.0	0.0	0.0	0.0	0.0	2.1	2.1	0.0	0.0	0.0	4.2	0.0	0.0	50	2.1	14.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
avatilan	NLac	ם מ	6.5	0.0	0.0	0.0	0.0	0.0	0.0	6.5	0.0	10.2	0.0	0.0	0.0	0.0	0.0	0.0	10.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Natine	NLac	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NLac									0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NLac									0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NLac									0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NLac									0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NLac									0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NLac																											
	NLac									I																		
	NLac																											
f atai	NLac	0	22	0	0	0	0	0	2	24	0	20	0	9	0		Ð	2	42	0	0	0	0	0	0	0		0

Passenger Transportation - Grounds for Parameters

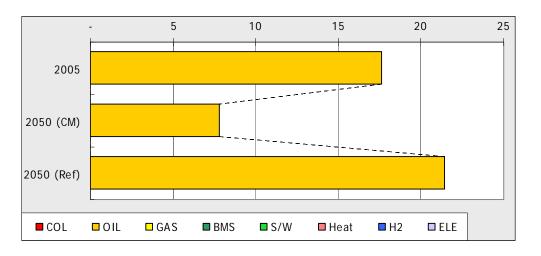
- The data of base year is from the statistical yearbook.
- Because of living standard improvement and dramatic social transition (the size of urban population will more than double), the demand for passenger transportation will increase around 500% during the projected period
- Per capita annual transportation distance: 2005: 1335 km, 2050 (ref): 6669 km
- Such an estimate on passenger transportation demand increase is based on the reality that currently the figure in Europe and Japan is more than 10,000 km per capita per year
- Demand is reduced through increasing load factor of vehicles and encourage bus and railway transportation
- Under the countermeasure scenario, the share of biofuel and H2 is much higher than the reference scenario

Passenger transportation – Modeling Results

For transportation sector, due to technology spill-over effect and the globalisation of world vehicle market, the main factor subject to national

CO2 emission in passenger transportation sector without allocated emission from heat, H2, electricity (MtC)

S/W


Heat

■ H2

2050 (Ref)

GAS

BMS

In this study, the source of secondary energy is not considered, e.g. we do not consider the emission effect of fuel for the production of heat, H2, and electricity

Freight- Parameters

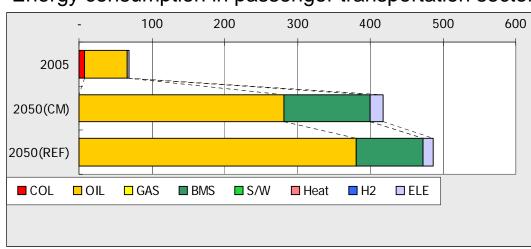
1 Energy service demand

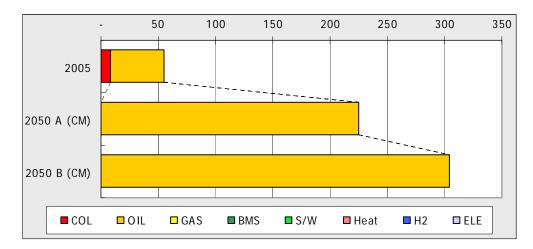
					20	50		
	Unit	2005	RE	ĒF	CI	M	CM/	REF
			A	В	A	В	A	В
Freight Road	B C-Km	869	6019	6019	6019	6019	100%	100%
Freight Train	B C-Km	2073	12941	12941	12941	12941	100%	100%
Freight Ship	B C-Km	4967	20065	20065	20065	20065	100%	100%
Freight Air	B C-Km	8	401	401	401	401	100%	100%
					0	0		
					0	0		
					0	0		

Service Share

	Unit					2000								20	50(CM)						- 20)50(REI	F)			
	Onic	COL	OIL	GAS	BMS	SAV	Heat	H2	ELE TO	otal	COL	OIL	GAS	BMS	S₩	Heat	H2	ELE Tota	COL	OIL	GAS	BMS	S₩	Heat	H2	ELE	Total
Freight Road	-	0%	100%	0%	0%	0%	0%	0%	0% 10	096		60%		20%				20% 100%	•	75%		15%				10%	100%
Freight Train	-	21%	72%	096	0%	0%	0%	096	7% 7	7996		45%		20%				35% 100%		55%		15%				30%	100%
Freight Ship	-	0%	100%	096	0%	0%	0%	096	0% 10	096		70%		30%				100%		85%		15%					100%
Freight Air	-	0%	100%	096	0%	0%	0%	096	0% 10	096		70%		30%				100%		80%		20%					100%
	-	0%	096	096	0%	0%	0%	0%	0%	0%								0%									0%
	-	0%	096	096	0%	096	0%	096	0%	0%								0%									0%
	-	0%	096	096	0%	0%	0%	096	0%	0%								0%									0%
	-	0%	096	096	0%	0%	0%	096	0%	096								0%									0%
	-	0%	0%	096	0%	0%	0%	0%	0%	0%								0%	•								0%
	-	0%	096	096	0%	0%	0%	0%	0%	0%								0%	•								0%
	-	0%	096	0%	096	0%	096	0%	0%	0%								0%									0%

Energy efficiency


		2000								2050(CM)									2050(REF)									
		COL	OIL	GAS	BMS	S/₩	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Freight Road	00+10		0.75							-		2,25		2.25				3.75	-		1.50		1.50				3.75	-
Freight Train	00+10	0.65	0.75						0.75	-		1.14		1.14				3.75	-		1.14		1.14				3.75	-
Freight Ship	00+10		0.75							-		0.99		0.99					-		0.99		0.99					-
Freight Air	00+10		0.75							-		1.33		1.33					-		1.12		1.12					-
										-									-									-
										-									-									-
										-									-									-
										-									-									-
										-									-									-
										-									-									-


Freight – Ground for Parameters

- 663% GDP increase and 21% population increase during the 2005-2050 period, mean dramatic increase in per capita income and production, leading to big growth in freight transportation demand.
- Narrowing income gap between urban and rural residents will lead to wider and more even distribution of consumption, leading higher share of road freight transport
- With technology progress and economic development, China's economic growth will be more driven by domestic consumption, instead of export, also due to the fact a larger share of China's export will be of higher value-added, instead of mass products, the share of demand for maritime transport will slightly shrink
- Higher income level will lead to increasing demand for freight transport by air
- The government's efforts for energy efficiency improvement and resource saving will make railway transport a bigger role in freight transport

Freight – modeling results

CO2 emission in passenger transportation sector without allocated emission from heat, H2, electricity (MtC)

In this study, the source of secondary energy is not considered, e.g. we do not consider the emission effect of fuel for the production of heat, H2, and electricity

- In the analysis, we do not take into account the impacts of changes in power sector
- There is great potential for future energy consumption and CO2 emission reduction in China in the coming decades, through influencing people's consumption behavior, lifestyles, increasing the share of clean energy, and energy efficiency improvement