Low carbon scenarios in 2050, Korea

- An Application of Energy Snapshot Tool and Backcasting model-

Contents

- 1. Background
- 2. Passenger Transportation Sector
- 3. Residential Sector
- 4. Process Backcasting Model
- 5. Conclusion & Discussion Point

Background

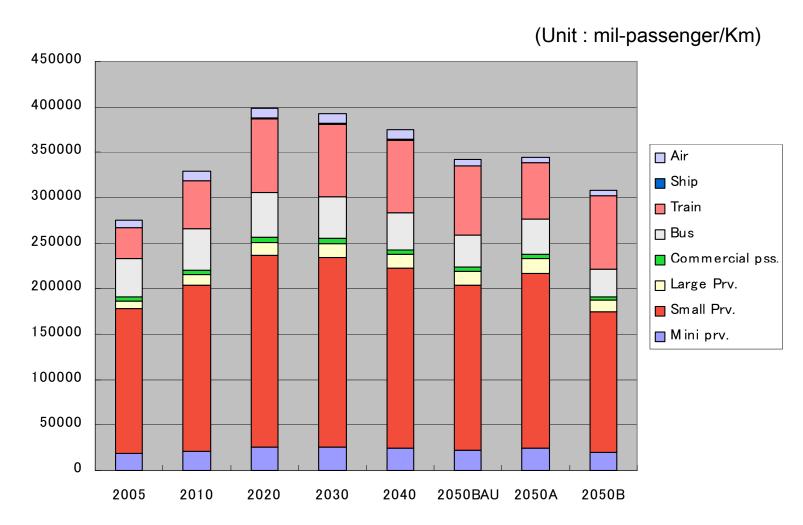
Why We Concentrate in Two Sectors

Renewable Energy in Residential Area (Solar Energy)

- Essential Factor for LCS in residential area
- Korean government Request to make roadmap

Transportation Sector

- Lots of Energy wasted on the road
- Construct more roads are not a solution

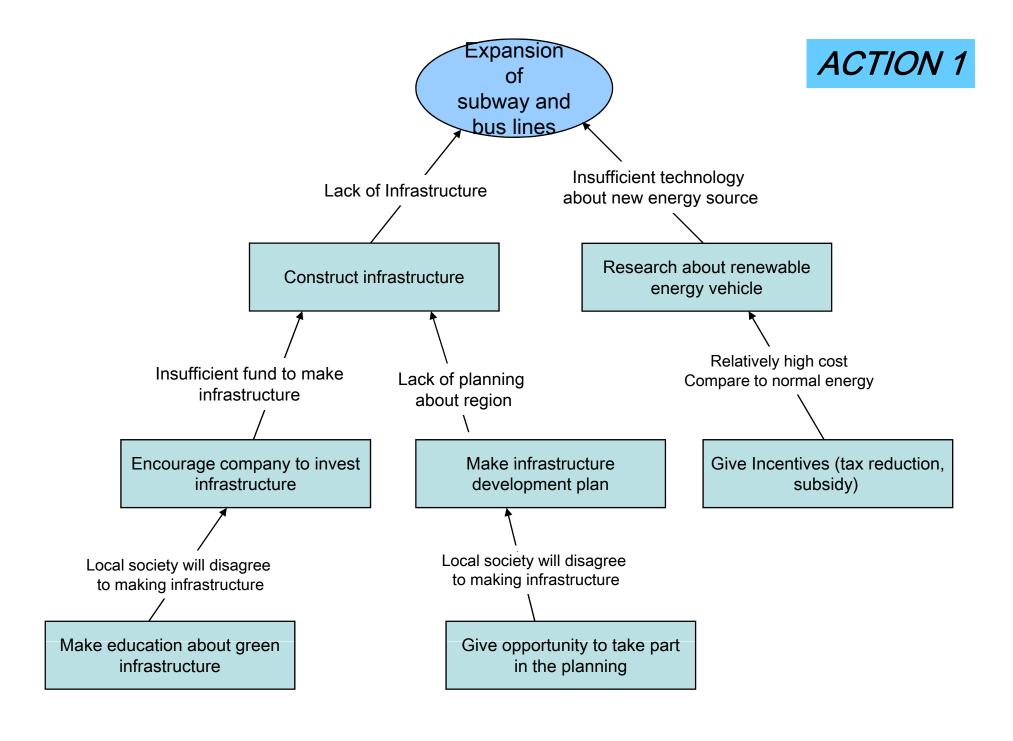


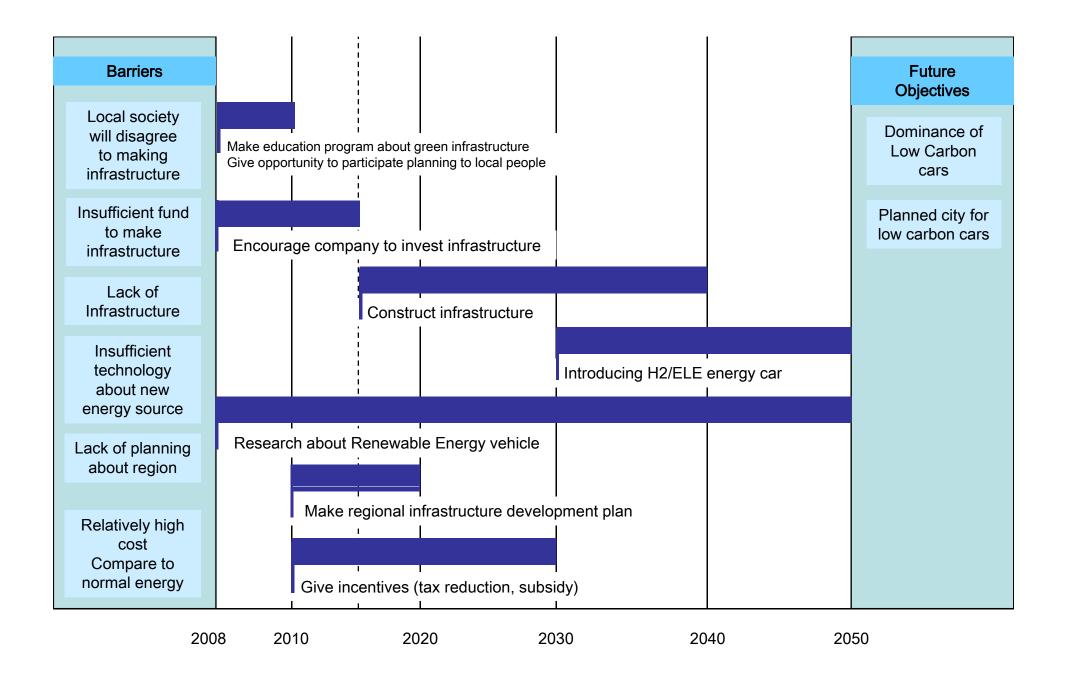
LCS Scenario Outline

	2000	Scenario (2050)
GDP (annual)	4.20%	2.98%
Population('000)	48,183	43,623
Household('000)	15,971	18,252
Average family members	2.89	2.39
Urbanization rate	80.8%	88%
Market	- Regulations	- Adequate rules and regulations
Life style	- Convenient lifestyle	- Reducing the attraction towards apartment complex

Passenger transportation Sector

- Scenario taking demand change into consideration the bike-related policy announced by Ministry of Government Administration and Home Affairs

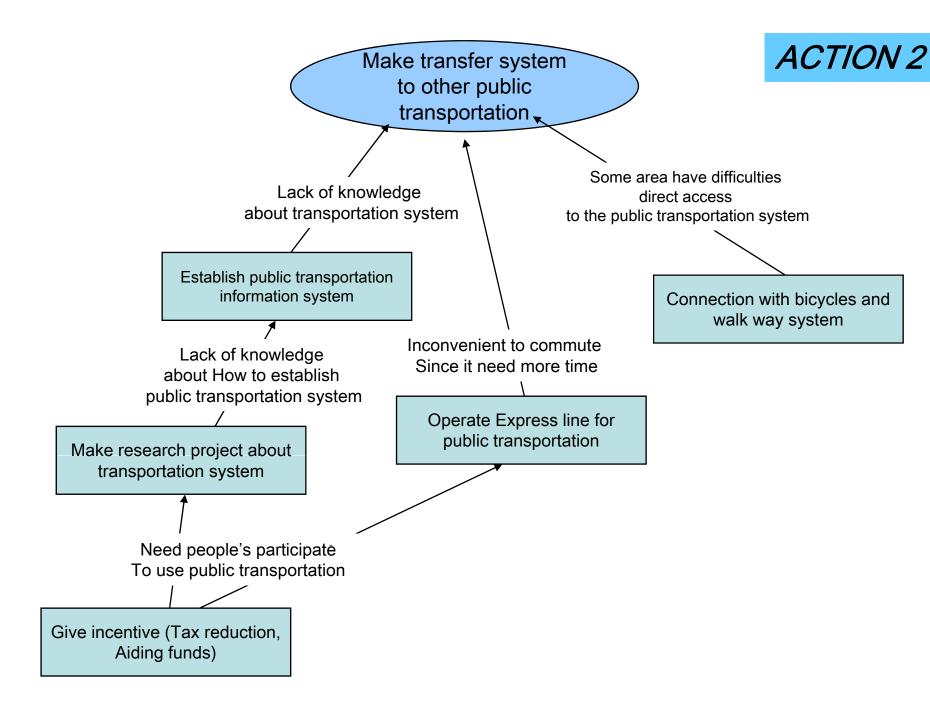


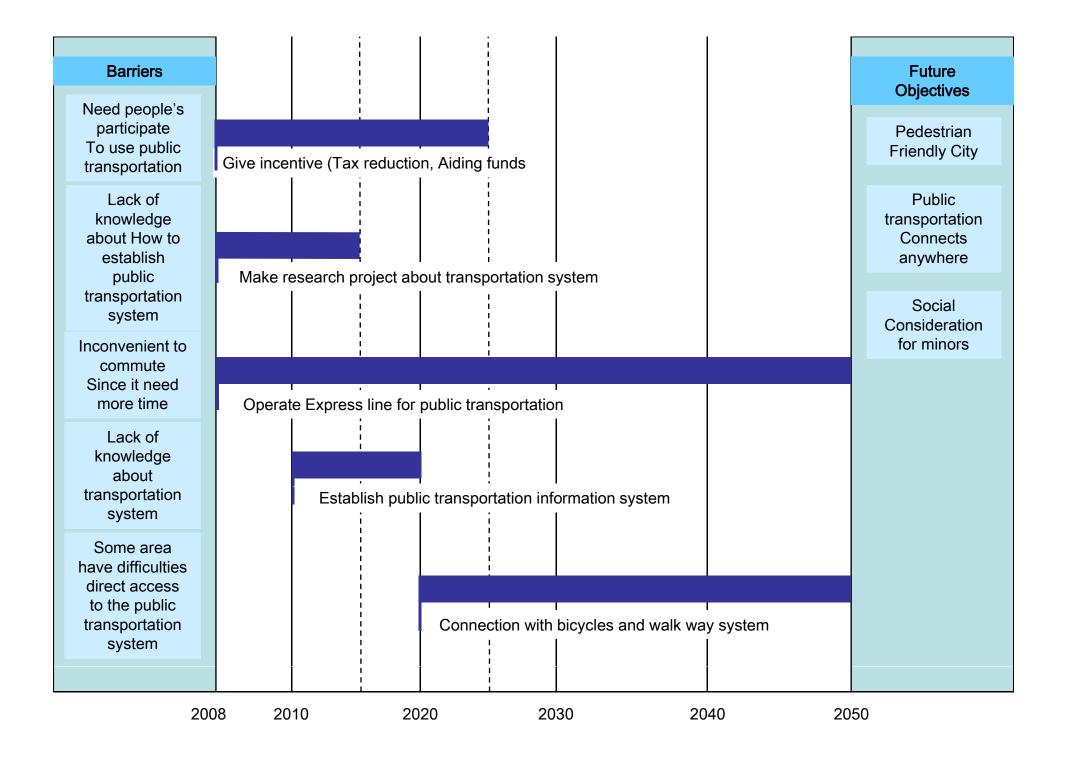

Assumption before Start Modeling

- -Demands of each energy source basically follows linear modeling.
- We merely consider about reducing CO2 in the passenger transportation area and residential area.

WE DID NOT COUNT IN FINANCIAL FACTORS IN OUR MODEL AND OTHER FACTORS

Transportation Sector

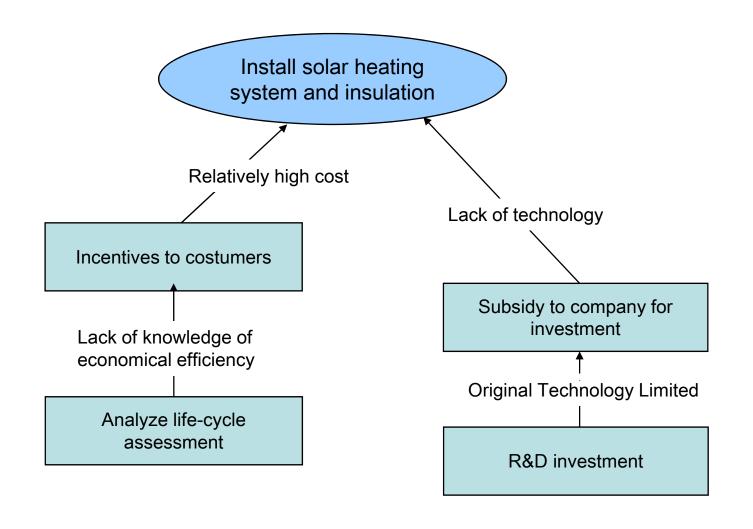


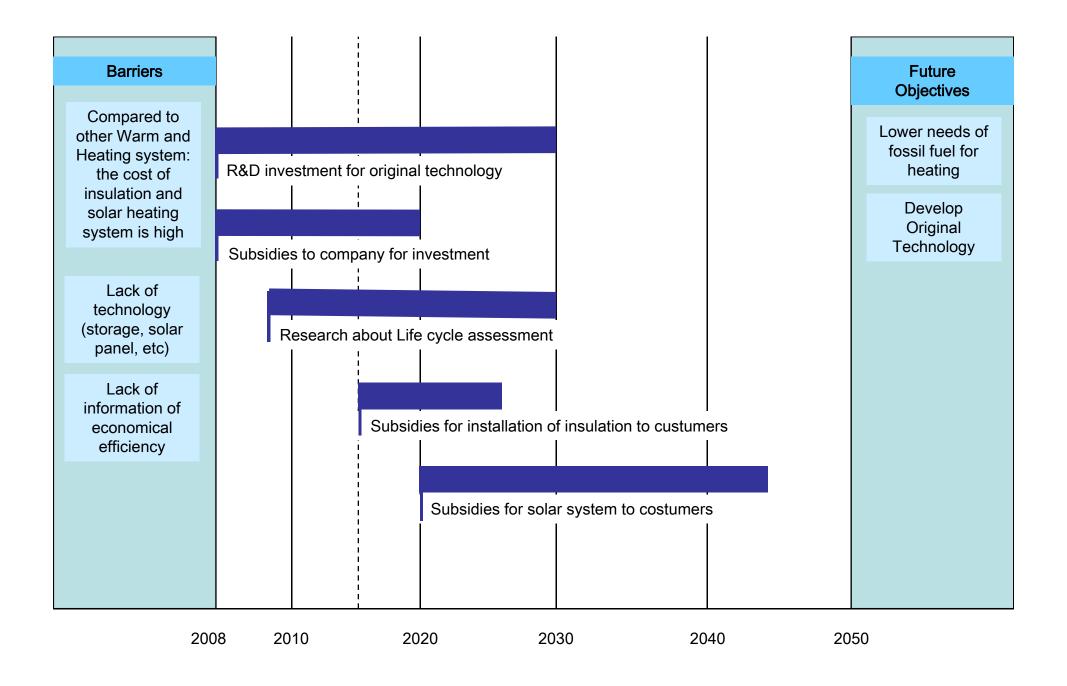

Dominance of Low Carbon cars

Most of demand for fossil fuel cars will substitute to low carbon car. This causes about 70% reduction of CO2 emission when compared to BAU. Because of changing type of household, it's much reasonable to have smaller car. It could have more CO2 reduction potential

Planned City for Low carbon cars

As low carbon car popular, it would bring many changes. For instance, social infrastructure will be changed that fits to the low carbons cars.


Expansion of subway and bus lines


In the center of urban area, traffic will be restricted. In the center area, walkways and Bicycle will used to connect between public transportation stations such as subway station and bus terminal Instead of car, public transportation system will be used to connect people between urban area and suburban area. For public transportation system transfer center will be built in the outskirt of city.

Establish
Public
Transportatio
n Information
System

This System will provide information about public transportation. For example, this will guide to shortest way to get somewhere people would like to go. It also gives exact time when the bus or subway will get to the station or terminal.

Residential Sector

Lower needs of fossil fuel for heating

In the residential sector, Installation solar energy panel and insulation will decrease the heating demands. It is possible to install them on various parts of buildings including the roof or walls. In many cases, photovoltaic are installed in not only residences and buildings but also in fallow lands for the purpose of selling the generated power

Develop Original Technology

By developing original technology, it's much easier to low prices since we don't need to pay royalties to use technology. It would cause wide spread of houses which uses solar energy. And Through these technology, we could make built-in buildings that has renewable energy technology in it.

Applying Backcasting model

Input options

	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1															
1	중형차 감소	TR_P	LARGE	DRV		-26.226 Mtoe/ur		1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
2	미니-기름기술	TR_P	MINI	EEF	OIL	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
3	미니-가스	TR_P	MINI	EEF	GAS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
4	미니-바이오가스	TR_P	MINI	EEF	BMS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
5	미니-수소	TR_P	MINI	EEF	H2	100 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
6	미니-전기	TR_P	MINI	EEF	ELE	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
7	스몰-기름	TR_P	SMALL	EEF	OIL	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
8	스몰-가스	TR_P	SMALL	EEF	GAS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
9	스몰-바이오가스	TR_P	SMALL	EEF	BMS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
10	스몰-수소	TR_P	SMALL	EEF	H2	100 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
11	스몰-전기	TR_P	SMALL	EEF	ELE	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
12	라지-기름	TR_P	LARGE	EEF	OIL	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
13	라지-가스	TR_P	LARGE	EEF	GAS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
14	라지-바이오가스	TR_P	LARGE	EEF	BMS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
15	라지-수소	TR_P	LARGE	EEF	H2	100 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
16	라지-전기	TR_P	LARGE	EEF	ELE	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
17	상업-기름	TR_P	COM	EEF	OIL	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
18	상업-가스	TR_P	COM	EEF	GAS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
19	상업-바이오가스	TR_P	COM	EEF	BMS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
20	상업-수소	TR_P	COM	EEF	H2	100 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
21	상업-전기	TR_P	COM	EEF	ELE	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
22	버스-기름	TR_P	BUS	EEF	OIL	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
23	버스-가스	TR_P	BUS	EEF	GAS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
24	버스-바이오가스	TR_P	BUS	EEF	BMS	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
25	버스-수소	TR_P	BUS	EEF	H2	100 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
26	버스-전기	TR_P	BUS	EEF	ELE	200 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
27	기차-기름	TR_P	TRAIN	EEF	OIL	50 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
28	기차-가스	TR_P	TRAIN	EEF	GAS	50 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
29	기차-바이오가스	TR_P	TRAIN	EEF	BMS	50 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
30	기차-전기	TR_P	TRAIN	EEF	ELE	100 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
31	배-기름	TR P	SHIP	EEF	OIL	33 Point	0	1 Mtoe	2010	0	40	0	0	0	O B-JPY	0%
32	배-가스	TR_P	SHIP	EEF	GAS	33 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
33	배-바이오가스	TR_P	SHIP	EEF	BMS	33 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
34	배-수소	TR_P	SHIP	EEF	H2	33 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
35	비행기-기름	TR_P	AIR	EEF	OIL	50 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
36	비행기-가스	TR_P	AIR	EEF	GAS	50 Point	0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
37	미니-연료변화	TR_P	MINI	FSH	OIL	-0.457 Mtoe/ur	nit 0	1 Mtoe	2010	0	40	0	0	0	0 B-JPY	0%
	-						-			-		_	-			

Input 50 options for accurate projection

Process of Backcasting Model

Transportation Sector

1 Energy service demand

	Unit	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050
PPV_S	B p-km	18	19	19	20	21	21	22	22	23	23	24
PPV_M	B p-km	159	163	166	170	173	176	180	183	186	190	193
PPV_L	B p-km	9	10	10	11	12	12	13	14	14	15	16
CPV	B p-km	4	4	4	5	5	5	5	5	5	5	5
BUS	B p-km	42	42	42	41	41	40	40	39	39	38	38
TRN	B p-km	33	36	39	42	45	48	51	53	56	59	62
SHP	B p-km	1	1	1	1	1	1	1	1	1	1	1
AIR	B p-km	8	8	8	7	7	7	7	7	6	6	6

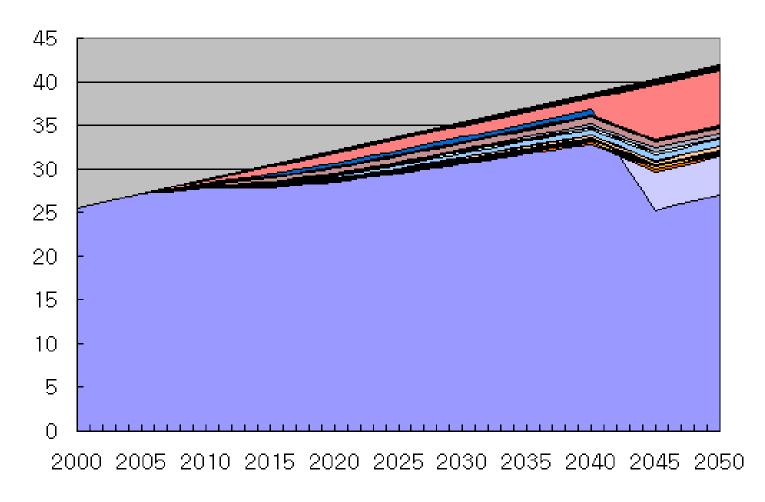
CM

2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050
18	19	19	20	21	21	22	22	23	23	24
159	163	166	170	173	176	180	183	186	190	193
9	10	9	6	3	2	2	2	2	2	2
4	4	4	5	5	5	5	5	5	5	5
42	42	42	41	41	40	40	39	39	38	38
33	36	39	43	46	50	54	57	61	65	68
1	1	1	1	1	1	1	1	1	1	1
8	8	8	7	7	7	7	7	6	6	6

Residential Sector

1 Energy service demand

	Unit	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050
Space cooling		1.6	2.04	2.46	2.88	3.3	3.72	4.15	4.57	4.99	5.41	5.8
Hot water and h	neating	10.1	10.7	11.4	12	12.7	13.3	14	14.6	15.3	16	16.6
Cooking		1.6	1.66	1.69	1.71	1.73	1.76	1.78	1.81	1.83	1.86	1.9
Lighting		1.0	1.08	1.15	1.23	1.3	1.38	1.45	1.53	1.6	1.67	1.7
Refrigerators		0.5	0.57	0.62	0.67	0.71	0.76	0.81	0.86	0.9	0.95	1.0
ICT appliance		0.7	0.91	1.1	1.3	1.49	1.69	1.88	2.07	2.27	2.46	2.7
Cloth washers		0.2	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.2
Other Appliance	e	1.1	1.35	1.62	1.89	2.16	2.42	2.69	2.96	3.23	3.5	3.8


CM

2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050
1.6	2.04	2.46	2.83	3.11	3.38	3.64	3.88	4.11	4.33	4.6
10.1	10.7	11.4	12	12.6	12.9	13.3	13.6	13.9	14.3	14.7
1.6	1.66	1.69	1.71	1.73	1.76	1.78	1.81	1.83	1.86	1.9
1.0	1.08	1.15	1.23	1.3	1.38	1.45	1.53	1.6	1.67	1.7
0.5	0.57	0.62	0.67	0.71	0.76	0.81	0.86	0.9	0.95	1.0
0.7	0.91	1.1	1.3	1.49	1.69	1.88	2.07	2.27	2.46	2.7
0.2	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.2
1.1	1.35	1.62	1.89	2.16	2.42	2.69	2.96	3.23	3.5	3.8

Process of Backcasting Model

Backto	Results	Filter	▼ Set		Option Sets	: 4 New	Option Sets 4	Lo	ad		▼ Sho	wESS		-	Show Graph
Avail.	Update No.	Options	Edit Data	Pene▼	Years 2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050
.,		기취 평가		%	0%	0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
Х	30	기차-전기		%	0%	0%	0%	0%	0%	0%	10%	35%	60%	85%	100%
Х	31	배-기름		%	0%	0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
х	32	배-가스													
х	33	배-바이오가스		%	0%	0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
х	34	배-수소		%	0%	0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
				%		0%	0%	0%	0%	0%	10%	35%	60%	85%	100%
Х	35	비행기-기름		%		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
х	36	비행기-가스		0.0		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
х	37	미니-연료변화		%											
x	38	비행기-바이오메스		%		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
		기차-수요증가		%		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
Х	39	ハルナエラバ		%		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
Х	40	중형-연료변화		%		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
х	41	대형-연료변화				0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
х	42	상업-연료변화		%											
x	43	버스-연료변화		%		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
				%		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
Х	44	기차-연료변화		%		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
Х	45	배-연료변화		94		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
Х	46	비행기-연료변화				00/			200/	420/	EE0/		2007		
х	47	태양열 기술진보		%		0%	5%	18%	30%	43%	55%	68%	80%	93%	100%
х	48	단열재설치		%		0%	0%	0%	7%	23%	40%	57%	73%	90%	100%
				%		0%	0%	0%	7%	23%	40%	57%	73%	90%	100%
Х	49	단열재설치(냉방)		%		0%	0%	6%	20%	34%	49%	63%	77%	91%	100%
Х	50	에너지원변화		%		0%	10%	21%	33%	45%	57%	69%	81%	93%	100%
				7/0		U70	10%	Z170	22%	45%	D/70	0970	0170	9376	100%

Process of Backcasting Model

In 2030 after introducing H2 mini and small car causes drastic decrease emission of CO2

Conclusion & Discussion point

Conclusions

- Korea already have potential options for LCS but they are individually working in different sectors in society
- Backcasting model could very useful to make national roadmap
- To achieve LCS, need cooperation among various Field
- Need more options and actions accurate projection of LCS
- During Preparing backcasting model, some error has occurred.
- Financial option should be included.

Thank you for your attention