Previous Impact Models in China

CISNAR Team, CAS, China March, 2000

Climate Change Impact Studies

- Z Climate Change Impact on Agricultural Production in China
- Z Climate Change Impact on Surface Runoff
- Z Climate Change Impact on Water Demands in China
- Z Sensitivity of Different Ep Methods to Temperature
- Z Impact on Distribution of Climate Zones in China

Other Researches

by Dr. Liu Yunfen

- IJ Climate Change Impact on Fishery Production at Coastal Area in China
- IJ Study on CO2 Emission flux from Ecosystem in the Eastern Part of Qingzang Plateau
- IJ Stud on CO2 Emission from Farmland Soil in Tibetan Plateau
- IJ Study on Carbon Cycle in the Agroecosystem of China

Climate Change Impact on Agricultural Production in China

Rice Wheat Maize

Conclusion

Negative and positive impacts were found in different areas to three staple crops. Totally, the output will increase by about 4.827 Mtons, assuming that the planting area keep as that in 1993.

Climate Change Impact on Surface Runoff

River Discharge Change (future/present in percentage)

	Annual	Spring	Summer	Autumn	Winter
Songhuajiang River	128	168	64	197	-
Yellow River	40	68	38	38	32
Yangtze River	38	43	34	34	43
Yaluzangbu River	40	60	35	34	45

DISCUSSION

- Water withdrawal in the upper reaches of the water basins is not taken into account
- Only one climate change scenario was used in the study

Climate Change Impact on Water Demands in China

- Irrigation Water Demand Projection
- Residential Water Demand Projection

Crop water requirements and

Climate Irrigation index and annual average temperature

Urban Residential Water Demand and

Residential water use and annual average temperature

14

Irrigation Water Demand

IWD = A.B

Where:

IWD is annual irrigation water demand;*A* is effective irrigated;*B* is irrigation index.*B* can be calculated as following:

B = (PET - P)/f

Where:

PET is the total crop potential evapotranspiration during growing season; P is the total precipitation during growing season; f is irrigation efficiency.

Irrigation Water Demand under Doubled CO₂

Residential Water Demand Projection

RWD = I.P.R

Where:

RWD is annual residential water demand;

I is residential water use per capita;

P is total population;

R is the adjusting factor to consider the ratio of agricultural population.

I = 2.9484T + 11.64

Where:

T is annual temperature.

Sensitivity of Different Ep Methods to Temperature

- Modified Penman
- Priestly-Taylor
- Thornthwaite
- Local

Characteristics of Selected River Basins

River Basin	Observing Station	Catchment Area (Km ²)	Climate Zone
Yangtze River	Hankou	1488036	Subtropic, Humid
Yellow River	Lanzhou	222551	Temperate, Semi-arid
Yujiang River	Nanning	75520	Subtropic, Humid
Lasha River	Lasha	27482	Plateau Temp., Semi-arid

Sensitivity of Different Ep Methods to Temperature

a. Lasha River

	1°C	2°C	3°C	4°C	5°C
Modified Penman	3.6	7.2	10.8	14.5	19.0
Priestly-Taylor	3.5	7.0	10.5	14.0	17.5
Thornthwaite	10.2	20.2	32.2	43.6	51.0
Local	б.4	12.8	19.3	27.4	34.5

b. Yellow River

	1°C	2°C	3°C	4°C	5°C
Modified Penman	3.2	6.4	9.6	12.8	16.5
Priestly-Taylor	3.2	6.4	9.6	12.8	16.0
Thornthwaite	15.1	31.8	47.4	68.7	97.5
Local	10.1	20.2	31.4	42.3	53.2

c. Yangtze River

		$2^{\circ}C$	3°C	4°C	5°C
Modified Penman	2.8	5.7	8.5	11.5	14.2
Priestly-Taylor	2.5	5.0	7.5	10.4	13.0
Thornthwaite	12.5	25.5	38.9	50.0	66.8
Local	3.2	6.5	9.8	13.4	16.2

d. Yujiang River

	l°C	$2^{\circ}C$	3°C	4°C	5°C
Modified Penman	3.6	7.8	10.8	14.5	19.0
Priestly-Taylor	3.2	6.4	9.6	12.8	16.9
Thornthwaite	12.0	24.0	38.0	50.0	65.0
Local	4.0	8.0	12.0	16.0	19.0

Relative Changes in Annual Potential Evapotranspiration (Ep), Evapotranspiration (Ev) and Runoff (R) in Different Basins under Different Climate Scenarios Lasha River

	Mo Penma	dified n Method	Priestly-Taylor Method		Thorn Me	thwaite thod	Local Method	
<u>%</u>		E _p		E _{rc}		E _p		, íp
T⁰3	1	0.8	10.5		32.2		19.3	
T⁰5	1	9.0	17.5		51.0		34.5	
%	R	$\mathrm{E_v}$	R	$\mathrm{E_v}$	R	$\mathrm{E_v}$	R	E_v
T°3P%0	-13.82	4.80	-9.87	4.90	-15.46	19.30	-16.79	13.2
T°3 P%15	44.56	30.78	32.41	30.97	-6.93	40.20	14.88	27.89
T°3 P%-5	-58.69	-21.13	-43.38	-20.42	-51.47	-14.57	-47.34	-7.74
T°5 P%0	-15.96	7.40	-17.15	8.40	-21.42	28.69	-22.43	18.47
T°5 P%15	22.74	34.47	24.83	35.77	-11.37	59.44	4.67	31.45
T°5 P%-5	-47.63	-24.53	-58.26	-28.46	-74.65	3.38	-49.87	-6.68

Relative Changes in Annual Potential Evapotranspiration (Ep), Evapotranspiration (Ev) and Runoff (R) in Different Basins under Different Climate Scenarios

Yellow River

	Mo Penma	dified n Method	Priestly-Taylor Method		Thorn Me	thwaite thod	Local Method		
%		E _p		E _{rc}	E _p		E	р	
T°3		9.6	9.6		47.4		31.4		
T°5	1	6.5	16.0		9	7.5	53	.2	
%	R	E _v	R	E _v	R	E _v	R	E_v	
T°3P%0	-12.67	4.23	-13.06	4.63	-5.86	2.46	-27.32	-3.86	
T°3 P%15	40.13	25.18	41.46	25.77	-1.04	5.87	20.46	18.71	
T°3 P%-5	-58.97	-20.07	-57.24	-23.46	-10.79	-1.68	-38.92	-4.83	
T°5 P%0	-20.46	5.61	-20.80	6.84	-7.80	4.74	-34.58	4.96	
T°5 P%15	28.84	22.84	29.76	34.21	-4.32	9.95	18.28	11.03	
T°5 P%-5	-59.63	-18.51	-69.07	-20.34	-21.25	-1.03	-59.17	-4.54	

Relative Changes in Annual Potential Evapotranspiration (Ep), Evapotranspiration (Ev) and Runoff (R) in Different Basins under Different Climate Scenarios

Yangtze River

	Modified		Priestly-Taylor		Thornthwaite		Local	
	Penmar	n Method	Met	thod	Met	thod	Method	
%]	Ep	E _{rc}		E _p		E _p	
T°3	8.5		7.5		38.9		9.8	
T ^o 5	1	4.2	13.0		66.8		16.2	
%	R	E _v	R	E _v	R	E _v	R	E _v
T°3P%0	-5.53	6.67	-4.35	4.18	4.67	-3.47	-0.88	0.42
T°3 P%15	34.83	21.18	26.25	15.21	5.50	16.33	20.21	7.48
T°3 P%-5	-38.26	-11.69	-36.63	-9.24	-13.38	-15.24	-11.06	-4.11
T°5 P%0	-5.96	8.83	-6.37	6.26	12.02	-3.81	1.13	1.25
T°5 P%15	21.72	20.25	24.72	20.42	36.67	16.54	25.72	18.42
T°5 P%-5	-28.41	-7.98	-31.56	-5.91	-10.44	-20.26	-7.62	-6.07

Relative Changes in Annual Potential Evapotranspiration (Ep), Evapotranspiration (Ev) and Runoff (R) in Different Basins under Different Climate Scenarios Yujiang River

	Moo	dified	Priestly	-Taylor	Thornthwaite		Local	
	Penmar	n Method	Method		Method		Method	
%]	Ep	E _{rc}		E _p		E _p	
T ^o 3	1	0.8	9.6		38.0		12.0	
T ^o 5	1	9.0	16.9		65	.0	19	0.0
%	R	E _v	R	E_{v}	R	E_v	R	E_{v}
T°3P%0	-5.08	6.15	-5.18	5.04	-23.56	19.18	-2.76	1.94
T°3 P%15	30.48	20.27	32.29	20.79	24.81	27.73	19.45	9.87
T°3 P%-5	-36.62	-10.83	-36.88	-10.45	-62.75	3.17	-9.74	-6.22
T°5 P%0	-7.79	8.77	-4.69	4.22	-34.45	26.64	-2.66	3.15
T°5 P%15	29.81	21.28	16.63	13.78	5.68	33.71	23.45	20.74
T°5 P%-5	-39.93	-7.90	-21.75	-3.99	-67.71	12.58	-8.17	-5.41

Conclusions

- Different Ep methods bring about considerable differences in modeled runoff values, the choice of the Ep method in assessing the impact of climate change on river basin discharge is important
- Empirical methods, mainly temperature based, give significantly different marginal changes to temperature fluctuations

Impact on Distribution of Climate Zones in China

Climate Zones under Current Climate

Climate Zones under Mean Climate Scenario of 11 GCMs

The End

Climate Zones under Climate Scenario of CCC1991

Climate Zones under Climate Scenario of GFDLT91

Climate Zones under Climate Scenario of GFDLR30

Climate Zones under Climate Scenario of GFDL985

Climate Zones under Climate Scenario of GFDQFX

Climate Zones under Climate Scenario of GISS995

Climate Zones under Climate Scenario of GISS998

Climate Zones under Climate Scenario of GISS996

Climate Zones under Climate Scenario of OSU1988

Climate Zones under Climate Scenario of UKMET88

Some Facts

- Climate change imposes impacts on bothWater supply and Water demand (directly/indirectly)
- 1.5°C increase in temperature led to 20 ~ 30% of increase in irrigation water demands, while 4.5°C increase can make the irrigation demand double

Information Inventory

- Social economic data (provincial level)
- Climate data
- Data on water use in cities
- Data about Irrigation (provincial level)
- River discharge data
- Background data on water basins
- Sectoral water use for water basins
- Water supply capacity and actual water supply of water conservancy facilities by water basins
- China water basin boundaries map
- China river system map
- China vegetation map
- China geographical map
- China soil map

Research Approach

Percentage of Changes in Annual Evaporation

Percentage of Changes in Annual Runoff

Difference of Potential Evapotranspiration between Present and Future Climate

Differences of Surface Runoff between Present and Future Climate

Seasonal River Discharge under Present Climate

Seasonal River Discharge under Future Climate

