Carbon Emissions from Land-Use Change

The 5th AIM International Workshop

Tsukuba, Japan 24-25 March 2000

Ron Sands

Battelle Memorial Institute

Acknowledgements

Pacific Northwest National Laboratory

- Jae Edmonds
- Marshall Wise
- Potsdam Institute for Climate Research
 - Ferenc Toth
 - Marian Leimbach

Battelle Memorial Institute

Why Model Land Use ?

- Carbon emissions from energy consumption are not the whole story.
 - Carbon emissions from land-use change
 - Carbon mitigation using biomass fuels
 - CH_4 and N₂O emissions from agriculture
- Energy and agricultural systems are linked through biomass fuels.

Conclusions

- A carbon policy for fossil fuel emissions provides incentives for production of commercial biomass.
- Increased biomass production releases carbon from soils.
- All modeling results are strongly affected by assumptions on crop productivity improvements.

MiniCAM Overview

- 11 regions
- 15-year time steps(1990- 2095)
- Partial equilibrium
- Eight markets

Energy Markets

Oil Natural Gas Coal Carbon

Biomass

Grains and Oil Seeds Animal Products Forestry Products

Agricultural Markets

AgLU Regions

- North America
- Japan, Australia, New Zealand
- Western Europe
- Eastern Europe
- Former Soviet Union

- Latin America
- China and Centrally-Planned Asia
- South Asia
- Other Pacific Asia
- Africa
- Middle East

MiniCAM Energy Markets

AgLU Model Structure

Methodology Highlights

Forest Dynamics

- Trees in AgLU grow for 45 years
- Previous version of AgLU unstable
- Two forest markets (current and future) needed for model stability
- Land Allocation
 - Land owners compare economic returns across crops, biomass, pasture, and future trees
 - Underlying probability distribution of yields per hectare

AgLU Scenarios

0.3% Tech. Change 0.5% Tech. Change 0.7% Tech. Change

Zero	Moderate	High
Α	B	С
D	E	F
G	Н	I

Scenario Carbon Prices

Battelle Memorial Institute

Battelle Memorial Institute

Scenario Carbon Prices

Battelle Memorial Institute

Global Land Use (D)

Battelle Memorial Institute

Global Land Use (E)

Battelle Memorial Institute

Global Land Use (F)

Battelle Memorial Institute

Battelle Memorial Institute

Carbon Emissions from Land Use Change

Global Land Use (C)

Battelle Memorial Institute

Global Land Use (F)

Battelle Memorial Institute

Global Land Use (I)

Battelle Memorial Institute

Model Development

- Demand and supply of agricultural products from FAO food balance tables
- Dynamics of carbon emissions from landuse change
- $\stackrel{\text{\tiny P}}{\sim}$ CH₄ and N₂O emissions from agriculture
- Water supply and demand

Conclusions

- A carbon policy for fossil fuel emissions provides incentives for production of commercial biomass.
- Increased biomass production releases carbon from soils.
- All modeling results are strongly affected by assumptions on crop productivity improvements.