THE INVENTORY OF GREENHOUSE GASES (GHG) IN MALAYSIA

by Azman Zainal Abidin Department of Environmental Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan

e-mail: azmanza@fsas.upm.edu.my

The need for a GHG inventory

To compare the relative contribution of different emission sources and different GHG to climate change.

To ascertain the portion of emissions attributable to individual countries and different regions of the world. To assess emission differences among different technologies in order to evaluate the cost - effectiveness of alternative control technologies.

To evaluate the effectiveness of possible mitigation strategies

The first GHG inventory exercise carried out in Malaysia entailed three (3) priority greenhouse gases i.e. carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O).

The 1995 IPCC guidelines were used in estimating the emissions of the GHG.

In accordance with the consensus reached concerning the non-Annex 1 countries at the Conference of Parties 2 (COP2), the base year selected was 1994.

- CO₂ emissions were estimated from major sources of the following sectors:
- a) Energy fuel combustion
- b)Industrial Processes essentially, cement manufacturing

Minor sources include the following sectors:

- c) Waste industrial wastewater treatment
- d) Land Use Change and Forestry (LUCF) forest and grassland conversion
- In addition, CO₂ sinks were estimated from the LUCF sector, namely changes in forest and woody biomass stocks

CH₄ emissions were estimated from the following sectors:

a) Energy

- fugitive emissions from coal and mining
- fugitive emissions from oil and natural gas systems
- burning of traditional biomass fuels

b) Agriculture

- domestic livestock enteric fermentation and manure management
- flooded rice fields
- burning of agricultural residues

- c) Waste
- landfills
- domestic and commercial wastewater treatment
- industrial wastewater treatment

d) Land Use Change and Forestryon-site burning of forest

N₂O emissions were estimated from the following sectors:

- a) Energy
- burning of traditional biomass fuel
- **b) Agriculture**
- burning of agricultural residues
- c) Land Use Change and Forestry
- on-site burning of forest

The procedure in compiling the inventory involves the following steps:

- Assembling of data
- Selection of appropriate emission factors
- Aggregating/Transforming of data into a standard format using appropriate software and guidelines
- Reporting and peer review
- Final national inventory

Malaysia's GHG emissions totalled the equivalent of 144 million tonnes of CO₂ in 1994. Net emissions, after accounting for sinks, totalled the equivalent of 76 million tonnes. On a per capita basis, the net emissions were equivalent to 3.7 tonnes.

Table 1: Summary Of National Greenhouse Gas Emissions And Removal In 1994

	1994							
Source & Sink	C	O_2	C	H_4	N ₂ O			
Categories	Gg	%	Gg	%	Gg	%		
1. Energy								
Fuel combustion	84,415	86.7						
Fugitive emissions from coal mining			0.13	0.006				
Fugitive emissions from oil & gas systems			593	26.6				
Burning of traditional biomass fuels			42	1.9	0.35	86.4		
2. Industrial Process								
Cement production	4,973	5.1						
3. Agriculture								
Domestic livestock enteric fermentation and manure management			75	3.4				
Flooded rice fields			252	11.3				
Burning of agricultural residues			2.3	0.1	0.054	13.3		
4. Waste								
Landfills			1,043	46.8				
Domestic & commercial wastewater treatment			3.5	0.16				
Industrial wastewater treatment	318	0.3	220	9.8				
5. Land Use Change and Forestry								
Changes in forest and other woody biomass stock (Sink)	-68,717	-						
Forest and grassland conversion	7,636	7.8						
On-site burning of forest			0.13	0.006	0.001	0.3		
Total (Emissions only)	97,342	100	2,231	100	0.405	100		
Net Total (After Subtracting Sink)	28,625							

Note: i) (-) denotes sink

ii) Total CO₂ emissions from international bunkers: 785.55 Gg.

(Has already been substracted from total CO2 emissions in the energy sector)

Table 2: Emissions And Removal Of Greenhouse Gases For Each Sector In 1994

Sector		Emissions (Gg)	GWPs	CO ₂ Equivalent (Gg)
		А	В	C=(A x B)
Energy	CO_2	84,415	1	84,415
	CH_4	635	21	13,335
	N_2O	0.35	290	102
Sub-total				97,852
Industrial Processes	CO_2	4,973	1	4,973
Sub-total				4,973
Agriculture	CH_4	329	21	6,909
	N_2O	0.054	290	16
Sub-total				6,925
Land Use Change and Forestry	CO _{2(Emission)}	7,636	1	7,636
	CO _{2 (Sink)}	-68,717	1	-68,717
	CH_4	0.13	21	3
	N_2O	0.001	290	0.3
Sub-total				7,639
Waste	CO_2	318	1	318
	CH_4	1,267	21	26,607
Sub-total				26,925
Total (Emissions only)				144,314
Net Total (After Subtracting Sink)				75,597

13

			MODULE	ENERGY					
			SUBMODULE	CO ₂ FROM	ENERGY SO	URCES (REFE	RENCE APP	ROACH)	
			WORKSHEET	1-1					
			SHEET	1 OF 2					
				А	В	С	D	E	F
				Production	Imports	Exports	International	Stock Change	Statistic
							Bunkers		Discrepa
	FUEL TYPES	-							
Liquid Fossil	Primary Fuels	Crude Oil		32798	1566	19726		229	8
		Natural Gas	Liquids						
	Secondary Fuels	Gasoline			1925			75	
		Aviation turb	ine fuel (ATF)		153	106		-3	
		Kerosene			9	584		52	
		Gas/Diesel C	Dil		1704	816	22	43	
		Fuel Oil			2561	1923	222	63	
		lpg			379	262		4	
		Non-Energy			758	1403	2	46	
		Aviation Gas			3				
		Others			574				
		LNG				12502			
Solid Fossil 7	Total	Coke and Co	al	89	1351	40		-163	
Gaseous Fossil Natural Gas (Dry)		(Dm.)	28335		1589				

G	Н	I	J	K	L
Apparent	Conversion	Apparent	Carbon	Carbon	Carbon
Consumption	Factor	Consumption	Emission	Content	Content
	(TJ/unit)	(TJ)	factor		
G=(A+B-C-D-			(t C/TJ)	(tC)	(Gg C)
E-F)		⊫(GxH)		K=(IxJ)	L=(Kx10 ⁻³
13605	41.87	569614	20.00	11392283	1139
1850	41.87	77456	18.90	1463915	146
50	41.87	2093	19.50	40821	4
-627	41.87	-26251	19.60	-514524	-5
823	41.87	34457	20.20	696039	69
353	41.87	14779	21.10	311845	3
113	41.87	4731	17.20	81375	8
-693	41.87	-29015	20.00	-580290	-58
3	41.87	126	18.90	2374	
574	41.87	24032	20.00	480645	48
-12502	41.87	-523434	17.20	-9003060	-900
1563	41.87	65440	29.50	1930471	193
26746	41.87	1119802	15.30	17132963	1733

			MODULE	ENERGY			
			SUBMODULE	CO ₂ FROM	ENERGY SO	URCES (REF	. APP.)
			WORKSHEET	1-1			
			SHEET	2 OF 2			
				-			
				М	Ν	0	Р
				Net Carbon	Fraction of	Actual	Actual C
				Emissions	Carbon	Carbon	Emissio
				(Gg)	Oxidised	Emissions	(Gg CC
						(Gg C)	
	FUEL TYPES					O=(MxN)	P=(Ox[44
Liquid Fossil	Primary Fuels	Crude Oil		11392.28	0.990	11278	41
		Natural Gas L	iquids				
	Secondary Fuels	Gasoline		1464	0.990	1449	Ę
		Aviation turbi	ne fuel (ATF)	41	0.990	40	
		Kerosene		-515	0.990	-509	- ^
		Gas/Diesel O	il	696	0.990	689	
		Fuel Oil		312	0.990	309	
		LPG		81	0.990	81	
		Non-Energy		-580	0.990	-574	-2
		Aviation Gas		2	0.995	2	
		Others		481	0.990	476	
		LNG		-9003	0.990	-8913	-32
	otal	Coke and Coa	al	1930	0.980	1892	6
Solid Fossil T		Natural Gas (Drv)	16887	0.995	16803	6
Solid Fossil To Gaseous Fos	sil	Natural Cas (Diy)				

Table 3: CO₂ Emissions (Gg) from Fuel Combustion based on Total Final Use in 1994

	Natural Gas	Aviation Gas	LPG	Motor Petrol	ATF	Kerosene	Diesel Oil	Fuel Cil	Coal & Coke	TOTAL	%
Residential & Commercial	493	0	1,83 3	0	0	438	71	180	0	3,014	7
Industries	1,131	0		34	0	15	9,413	4,22	2,68	18,083	41
Transportation	12	14	588	11,85	2,88	0	6,549	0	1	21,375	49
Agriculture	0	0	0 0	5 0	4 0	0	1,293	61 3	0 0	1,296	3
IOTAL	1,636	14	2,421	11,889	2,884	453	17,32 6	4,464	2,681	43,768	100

Note: ATF=Aviation Turbine Fuel LPG=Liquefied Petroleum Gas

Table 4: Greenhouse Gas (GHG) Emissions Of Selected Countries

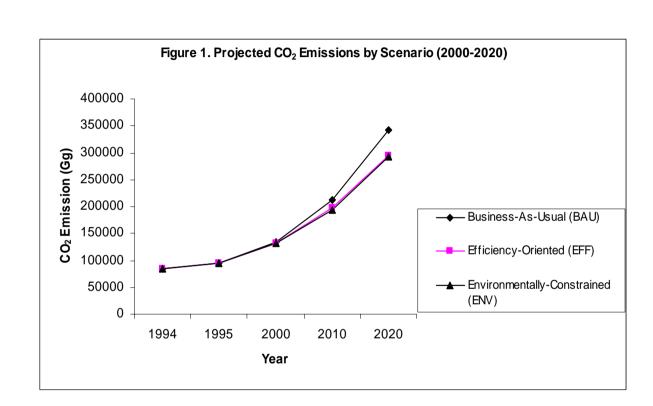
Country	Year	GHG emissions (million
		tonnes)
Malaysia	1990	138
	1994	144
Thailand	1990	225
Australia	1990	572
Japan	1990	1,216
	1994	1,276
United States	1990	5,896
of America	1994	6,131

Note: The emissions are expressed as CO₂ equivalent, and include the major GHGs i.e. CO₂, CH₄ and N₂O.

Table 5: CO₂ Emissions Per Capita Of Selected Countries (1996)

Country	tonnes CO_/capita
Philippines	0.91
Indonesia	1.21
Thailand	2.92
Malaysia	5.31
Japan	9.36
United Kingdom	9.91
Australia	10.57
Canada	15.67
United States	20.05
Singapore	21.45
Brunei	27.92

Source: International Energy Agency, 1996


Projection of GHG Emissions

 Pertinent information was extracted from a country study of Malaysia (1996) on efficiency - oriented and environmentally
 - constrained alternative energy strategy scenarios (EASES) Three plausible scenarios were considered:

- a) Business-as-usual (BAU)
- **b)** Efficiency-oriented (EFF)
- c) Environmentally-constrained with efficiency (ENV)

Table 7: Projected CO2 emission by scenario (2000-2020)

	Actual (C	Gq)	Pro)	
	1994	1995	2000	2010	2020
Business-As-Usual (BAU)	84415.25 95	5235.75	132990	211662	341491
Efficiency-Oriented (EFF)	84415.25 95	5235.75	132561	198315	294470
Environmentally-Constrained	84415.25 95	5235.75	132561	194271	293755
(ENM)					

Difficulties and uncertainties encountered in the course of preparing the GHG inventory include the following:

- Database collection format
- Categorization of forests
- Emission factors
- Forest fires
- Defining certain terminologies

THANK YOU