The 7th AIM International Workshop, 15-17 March 2002, Japan

CO₂ Emission Reduction from the Power Sector in Selected Asian Countries

Ram M. Shrestha Asian Institute of Technology Thailand

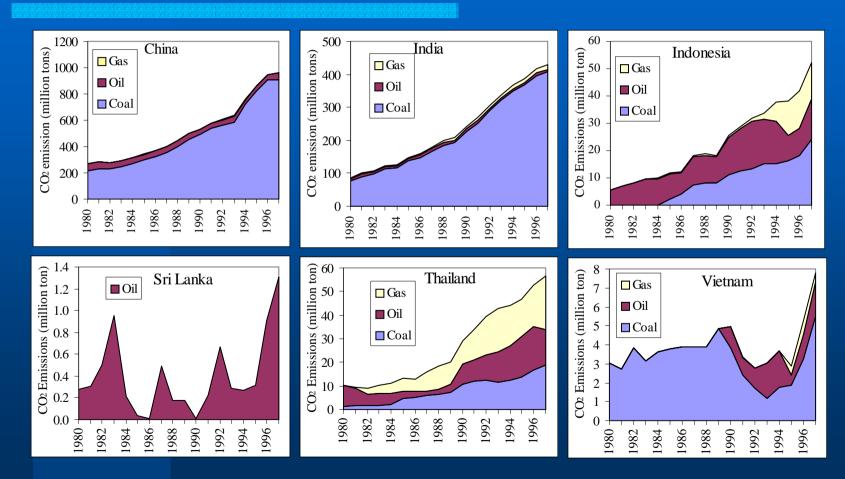
Overview of Presentation

- ARRPEEC power sector project.
- Status of power sector CO₂ emission during 1980-1997.
- Least cost generation options without CO₂ emission targets.
- Least cost generation options under CO₂ emission targets.
- Marginal cost of CO₂ mitigation in selected countries.
- Implications on local/regional environmental emissions
- Conclusions


ARRPEEC -- Power Sector Project: Objectives

- Assessment of least cost supply-side options for mitigating GHG and other harmful emissions subject to emission reduction targets
- Identification of some CDM projects and assessment of their GHG and other harmful emissions mitigation potential
- Assessment of environmental and utility planning implications of Independent Power Producers (IPP) and Decentralized Power Generation (DPG)

Countries Covered: Yunan (China), NREB (India), Indonesia, Sri Lanka, Thailand and Vietnam


Share of Power Sector CO₂ Emissions (1990-1999)

 Power sector's share in total CO₂ emission: 12% in Sri Lanka to over 42% in China and India

- Increase in the sector's share in China, India, Indonesia, Sri Lanka.
- Decrease in the share in Thailand and Vietnam.

CO₂ Emission from the Power Sector (1980-1997), 10⁶ tons

Least-cost Generation Planning Model

Minimize: Total System Costs (capital + O&M +Fuel + DSM Cost)

Subject to:

- Power demand constraints
- Annual energy constraints
- Hydro-energy constraints
- Reliability constraints
- Fuel or resource availability constraints
- Emission constraints

Candidate Generation Technologies

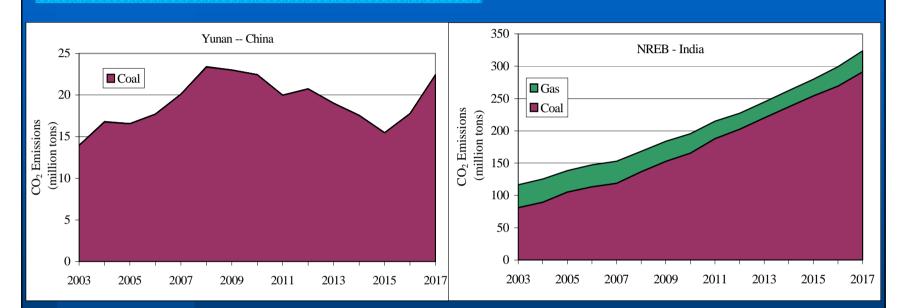
	Generation Technology Options				
Region/ Countries	Conventional Thermal	Cleaner and Efficient	Renewable		
Yunan China	Conventional Coal	PFBC	Geothermal, Hydro Solar PV, Wind		
NREB India	Conventional Coal, Nuclear	Combined Cycle, PFBC, IGCC	BIGCC, Wind, Hydro		
Indonesia	Conventional Coal, Combustion Turbine	PFBC	Geothermal, Minihydro		
Sri Lanka	Conventional Coal and Oil, Diesel, Combustion Turbine	Combined Cycle, PFBC, IGCC	Wind, Minihydro, Dendro, Hydro		
Thailand	Conventional Coal and Oil, Combustion Turbine,	Combined Cycle, PFBC, IGCC	Hydro		
Vietnam	Conventional Coal and Oil, Nuclear	PFBC, Combined Cycle	Hydro		

Note:

BIGCC = Biomass Gassification Combined Cycle, PFBC = Pressurized Fluidized Bed Combustion,

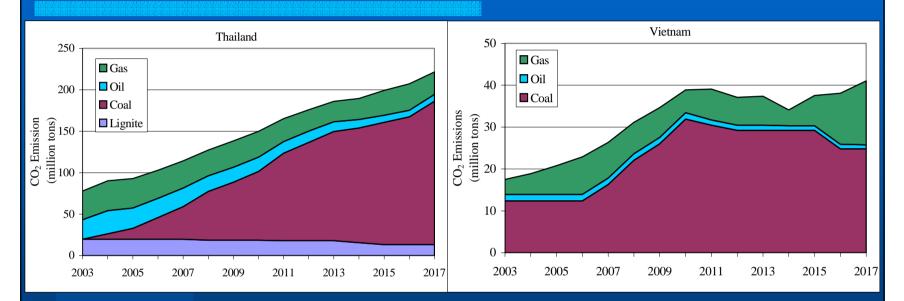
IGCC = Integrated Gassification Combined Cycle

Least Cost Generation Options

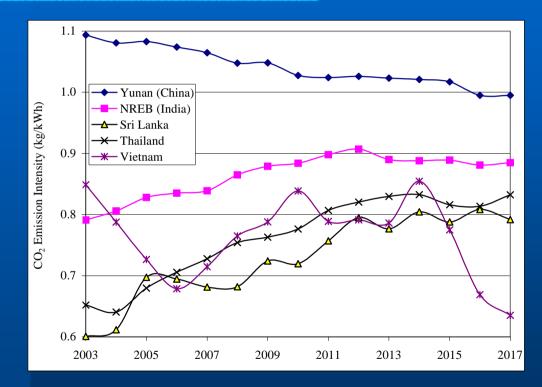

Cost effective generation technologies without CO₂ emission reduction targets

Region/Country	Generation Technology		
Yunan China	Conventional Coal, Hydro		
NREB India	Conventional Coal, Combined Cycle, Nuclear, PFBC, IGCC, Hydro, Wind		
Indonesia	Conventional Coal, Combined Cycle		
Sri Lanka	Conventional Coal, Diesel, Combustion Turbine		
Thailand	Conventional Coal, Combined Cycle		
Vietnam	Conventional Coal, Combined Cycle, Hydro		

Under the BAU scenario (i.e.without a CO₂ emission reduction target), cleaner, energy efficient and non-hydro renewable electricity generation technologies are not found cost effective in the selected countries except NREB (India).


CO₂ Emission during 2003-2017, 10⁶ tons

- <u>Yunan Province (China)</u>: The power sector CO₂ emission in 2017 would be 1.6 times that in 2003.
- <u>NREB (India)</u>: CO₂ emission in 2017 would be 2.78 times that in 2003. Increase in share of coal based generation in the power sector CO₂ emission from 70% in 2003 to 90% in 2017.


CO₂ Emission during 2003-2017, 10⁶ tons (contd.)

- <u>Thailand:</u> The CO_2 emission from the power sector in 2017 would be 2.85 times that in 2003. The contribution of coal based generation in CO_2 emission would increase from 25% in 2003 to 84% in 2017.
- <u>Vietnam</u>: The CO₂ emission from the power sector in 2017 would be 2.34 time that of 2003. The contribution of coal based generation in CO₂ emission would increase from 70% in 2003 to 82% in 2010 and would decrease to 61% in 2017.

CO₂ Emission Intensity during 2003-2017 (kg CO₂/kWh)

• CO₂ intensity to increase in NREB (India), Thailand and Sri Lanka and decrease in Yunan (China)

Least-Cost Options at Selected CO₂ Emission Targets

Cost-Effective Cleaner/Energy Efficient and Renewable Technologies

- Yunan (China): IGCC, PFBC, Wind, Geo-thermal and Solar options selected at CO₂ reduction target of not less than 5%.
- NREB (India): IGCC, PFBC and Nuclear selected even without CO_2 reduction target; BIGCC selected at 5% and higher targets.
- Indonesia:
- Sri Lanka:

• Thailand: plants;

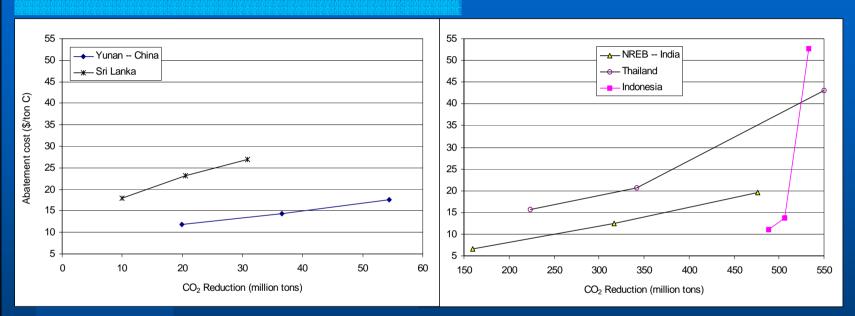
Geo-thermal selected even without CO2 reduction targets.

Wind selected at 10% and higher targets; Dendro at 20% target Emission targets met by higher share of combined cycle IGCC selected only at 20% reduction target.

Marginal Abatement Costs, \$/ton C at 1998 prices

	CO ₂ Emission Reduction Targets				
Country	5%	10%	15%	20%	
Yunan China	11.8	14.3	17.6	NA	
NREB – India	6.6	12.5	19.7	NA	
Indonesia	11.0	13.8	NA	52.6	
Sri Lanka	NA	17.9	NA	23.2	
Thailand	15.7	20.7	NA	43.0	

Ranges of MAC values:

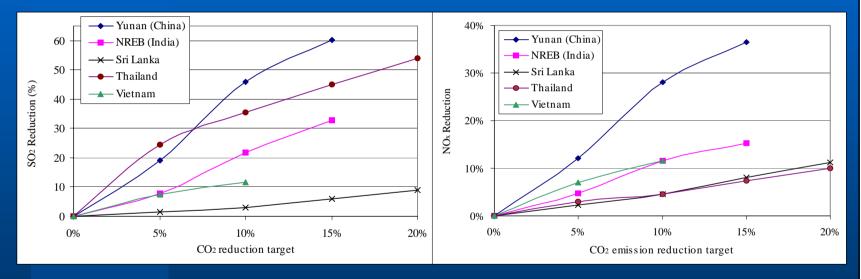

- 6.6 to 15.7 \$/ton of Carbon at 5% reduction target
- 12.5 to 20.7 \$/ton of Carbon at 10% reduction target
- 23.2 to 52.6 \$/ton of Carbon at 20% reduction target

Note:

NA = not applicable

Marginal abatement costs are expressed in 1998 US \$.

CO₂ Mitigation ("Supply") Curves



- Cost of CO₂ reduction relatively low in Yunan (China) and NREB (India).
- CO₂ emission reduction during 2003-2017, from Yunan (China), NREB (India), Indonesia, Sri Lanka and Thailand:
 - 1.3 billion tons at MAC of 20 \$/ton C or lower.
 - 1.6 billion tons at MAC of 40 \$/ton C or lower.
- Estimates of Full Global Trading price of carbon ranges from 22 to 88 \$/ton C
 [Ellerman (1998), Painuly (2001)]

SO₂ and NO_x Emission Reductions

SO₂ Reduction

Disproportionately large % reduction in SO₂ emission (over 30%) to take place at 15% CO₂ emission reduction target in Yunan (China), NREB (India) and Thailand.
NO_x reduction by 36% at 15% CO₂ reduction target in Yunan (China).

Conclusions

• At present costs, cleaner/energy efficient and renewable options are not cost effective under the BAU case, except in NREB (India).

- Clean coal technologies would be cost effective at 5% CO2 reduction target in Yunan (China) and at BAU case in NREB (India).
- 1.3 billion tons of CO₂ emission could be cost effectively reduced during 2003-2017 from power generation in Yunan (China), NREB (India), Indonesia, Sri Lanka and Thailand at marginal abatement cost of not more than 20 \$/ton C (which less than the estimate Full Global Trading price of 22-88 \$/ton C).
- Disproportionately large percentage reduction in SO₂ emission (I.e., over 30%), would take place at 15% CO₂ emission reduction target in Yunan (China), NREB (India) and Thailand.

Thank You

