## Integration of Emission, Climate Change and Impacts

#### Toshihiko Masui Kenichi Tsuchida (Tokyo Institute of Technology) Kiyoshi Takahashi

The 8th AIM International Workshop 14th March, 2003 National Institute for Environmental Studies

# Integration of Emission model, Climate model, and Impact model





# **Emission model (1)**

- Computable general equilibrium model with recursive dynamics (1997-2100)
- GTAP database (ver.5)
- Calibration based on SRES-B2
- Emissions: CO<sub>2</sub>, N<sub>2</sub>O, CH<sub>4</sub>, SO<sub>2</sub> from fossil fuel combustion, land use, industrial process and landfill



# **Emission model (2)**

#### 11 Regions

**JPN:** Japan **CHN:** China **IND:** South Asia LAA: Latin America **AFR:** Africa **EUR: West Europe MIE: Middle East** 

### **NOA: North America CIS: East Europe & CIS OCE:** Oceania

**ROW: Rest of the world including Southeast Asia** 

#### 9 sectors

| coal        | crude oil |
|-------------|-----------|
| gas         | thermal p |
| agriculture | industry  |

oil products renewable energy service



power

## **Climate model**

#### AIM/Climate by Prof. Matsuoka

Inputs: CO<sub>2</sub>, N<sub>2</sub>O, CH<sub>4</sub>, SO<sub>2</sub> from emission model CFCs from scenario (SRES-B2)

### Outputs: global mean temperature

sea level rise

#### Downscale of climate change

By using calculated global mean temperature and GCM runs, temperature and precipitation changes by 0.5 degree cell are estimated.



## Impact model

| Global mean temperature change                                                                                |   | AIM/Climate                   |
|---------------------------------------------------------------------------------------------------------------|---|-------------------------------|
|                                                                                                               | • |                               |
| Downscaling temperature change into 0.5 degree cell<br>Calculation of precipitation change by 0.5 degree cell |   | GCM results                   |
|                                                                                                               |   |                               |
| Calculation of productivity change in wheat, rice & maize                                                     |   | Productivity of wheat, rice & |
|                                                                                                               |   | maize by temp.                |
| Aggregation of crop productivity change into country                                                          |   | in each cell                  |
|                                                                                                               |   |                               |
| Calculation of agricultural productivity change                                                               |   | emission model                |
| mpact model                                                                                                   |   |                               |



# Scenarios (climate policy)

- 1. No reduction
- 2. Annex I reduction

Kyoto (-2010) + 5%/10ys reduction (2010-)

- 3. Global reduction: 550 ppm stabilization Annex II reduction will start after 2010.
- Emission trade will be carried out among countries constrained by CO<sub>2</sub> reduction.
- In the case of global reduction scenarios, allocation of CO<sub>2</sub> emission rights is linearly changed from actual emissions in stating year to equal per capita in 2100.
- Each scenario has with/without climate change impact.



# Simulation results **CO2 emissions** (scenarios with climate change impact)





### **Global mean temperature change**

(scenarios with climate change impact)





# Productivity change (rice, wheat & maize) in 2100 in No reduction scenario





## GDP change in 2100 due to crop productivity change in No reduction case

(compared with no climate change scenario)





nc: NCAR

s: CISRO

af: GFDL

AIM, NIES

# Agricultural productivity change in 2100 by scenarios



Integration of models

AIM, NIES

## GDP change in 2100 by scenarios

(compared with no climate change scenarios)



## Conclusions

- In the case of no reduction case, productivity change of rice, wheat and maize will decrease global GDP by about 1% in 2100, although regional impact will be divergent.
- Especially in South Asia, Africa, Latin America and Oceania, crop productivity and GDP will decrease drastically.
- By participation of developing countries in CO<sub>2</sub> reduction, GDP loss in South Asia, Africa and Latin America will be mitigated by about 40% in 2100.
- Climate impact module is applied to AIM/Ecosystem model.

