AIM/Material Model 1. Modified Structure 2. India Application

Ashish Rana (NIES, Japan) The 8th AIM International Workshop 13-15 March 2003, Tsukuba

Part 1: Modified Structure

- Need for application to countries with limitations of dataset
- APEIS training workshop in Delhi

AIM/Material Model

Features, model and necessary data

Toshihiko MASUI and Ashish RANA

National Institute for Environmental Studies

Session 4: Asia Pacific Integrated Model (AIM): Introduction to Component Models (Cont.)

APEIS Capacity Building Workshop on Integrated Environment Assessment in the Asia Pacific Region

> October 24-26, 2002 Hotel Grand Inter-Continental, New Delhi, India

Modifications

- Waste management sector is unified
- Import matrix not used

- Possible to include natural resources sectors
 - Presentation of Dr. Masui in next session

Formulation of AIM/Material

		Production sector		u	Investment					lt		
		Sector 1	Sector 2	Sector 3	Final Consumptio	Sector 1	Sector 2	Sector 3	Supply	Price	Endowmen	
	iate	Commodity 1	X ₁₁	X ₁₂	X ₁₃	C_1	I ₁₁	I ₁₂	I ₁₃	Y ₁₁ +Y ₂₁ +Y ₃₁	P ₁	
	Intermed inputs	Commodity 2	X ₂₁	X ₂₂	X ₂₃	C_2	I ₂₁	I ₂₂	I ₂₃	Y ₁₂ +Y ₂₂ +Y ₃₂	P ₂	
Input		Commodity 3	X ₃₁	X ₃₂	X ₃₃	C ₃				Y ₃₃	P ₃	
		Capital	K ₁	K ₂	K ₃			-			P _K	K^*
		Labor	L_1	L ₂	L3						PL	L^*
	I	Final disposal			W ₃						P _W	W^*
ut	Commodity 1		Y ₁₁	Y ₂₁	Y ₃₁						P ₁	
utp	Commodity 2		Y ₁₂	Y ₂₂	Y ₃₂						P ₂	
0	Commodity 3				Y ₃₃						P ₃	

Formulation of AIM/Material Market equilibrium – Produced commodity $P_{i}\left\{\sum_{i=1}^{3} Y_{ji} - \left(\sum_{i=1}^{3} X_{ij} + C_{i} + \sum_{i=1}^{3} I_{ij}\right)\right\} = 0$ $P_i \geq 0$ $\sum_{i=1}^{3} \overline{Y_{ii} - (\sum_{i=1}^{3} X_{ij} + C_i + \sum_{i=1}^{3} I_{ij})} \ge 0$ – production factor (capital, labor, …) $P_{K}\left\{K^{*}-\sum_{i=1}^{3}K_{j}\right\}=0, P_{K}\geq 0, \text{ and } K^{*}-\sum_{i=1}^{3}K_{j}\geq 0$ $P_L \left\{ L^* - \sum_{i=1}^3 L_i \right\} = 0, \ P_L \ge 0, \ \text{and} \ L^* - \sum_{i=1}^3 L_i \ge 0$ $P_{W}\left\{W^{*}-\sum_{i=1}^{3}W_{i}\right\}=0, P_{W}\geq 0, \text{ and } W^{*}-\sum_{i=1}^{3}W_{i}\geq 0$

Formulation of AIM/Material • Balance of production sector $\sum_{i=1}^{3} P_i X_{ij} + P_K K_j + P_L L_j + P_W W_j = \sum_{i=1}^{3} P_i Y_{ij}$

• Balance of final demand sector $H = P_{K} \sum_{j=1}^{3} K_{j} + P_{L} \sum_{j=1}^{3} L_{j} + P_{W} \sum_{j=1}^{3} W_{j}$ $H = \sum_{i=1}^{3} P_{i}(C_{i} + \sum_{j=1}^{3} I_{ij})$

Capital stock and investment
 – for dynamics

$$K_{j,t+1} = (1 - \delta_j) K_{j,t} + \sum_{i=1}^{3} I_{ij}$$

Formulation of AIM/Material

- Relationship between input and output
 - Production function
 - Demand function
 - CES, Leontief, Cobb-Douglas, Linear, ...
- Household: Maximize utility
- Production sector: Maximize profit
 Find equilibrium solution

Dataset for AIM/Material Model

- IO table (commodity x commodity)
- U matrix (commodity x sector)
 - Disaggregate pollution management
- V matrix (sector x commodity)
- Investment by sector
 - Disaggregate pollution management
- Pollution flow by sector
 - Generation, treatment, discharge, recycle, ...
- Supply and demand of reused material

IO/U/V/Investment/ pollution/reuse

Input-Output table

household consumption, government consumption, investment, export

	commodity 1	•••	commodity i	final demand	total output			
commodity 1								
:		Distribution of produced commo						
commodity i		to production of commodity and final demand is presented						
value added								
total output		In order to produce commodity,						
			what kind of inputs and how much of them are necessary.					

IO/U/V/Investment/ pollution/reuse

U matrix (Use matrix)

	sector 1		sector j	final demand	total output				
commodity 1									
:		Distribution of produced commod							
commodity i	ommodity i		to sectors and final demand						
value added									
total output		What kind and how much							
		of input for production activity are necessary in sector							

- Necessary data for simulation-10/0/V/investment/ pollution/reuse **Revised U matrix** (disaggregate production and pollution management) sector j management management . . . production total of pollution a of pollution p commodity 1 Data of original U matrix are disaggregate original U matrix into production and pollution management. comm value added total output

IO/U/V/Investment/ pollution/reuse

V matrix (Make matrix)

	commodity 1	 commodity i	total output	
sector 1				
:				
sector j				
total output		How much of c	commodity i	
		produced by sector j is represented.		

IO/U/V/investment/ pollution/reuse

Investment by sector

	commodity 1		commodity i	total investment
sector 1				
:				
sector j				
total output	How mucl	h of c o sec	commodity	
			, (OT).	

pollution/reuse

Pollution flow by sector Pollution type

- Air pollution: SOx, NOx, CO2, ...
- Water pollution: BOD load, COD load, ...
- Solid waste: sludge, scrap metal, slag, ...
- Other:
 - Toxic waste: Pb, dioxin, ...

- Necessary data for simulation-

pollution/reuse Supply and demand of reused material

	commodity 1		commodity i	total gen reused	eration of collution
pollution a					
pollution p					
total supply of					
reused commodity	How m				
	can be	can be supplied as commodity i.			

- Necessary data for simulation-

pollution/reuse Supply and <u>demand</u> of reused material

		Sector J	reused pollut	ion		
How r	How much of recycled commodity i					
can be	can be demanded in sector j.					
	How r can be	How much of can be dema	How much of recycled co can be demanded in sec	How much of recycled commodity i can be demanded in sector j.		

Optional Data for AIM/Material Model

Energy balance table

 Link physical data from energy balance table and monetary data from U matrix

Other physical material data

- Raw materials such as wood, paper, steel, ...
- Link these physical data and monetary data

Scenarios for AIM/Material Model

Technology change

- Energy efficiency, pollution generation, pollution management, recycled material input, and so on for new equipment (investment)
- Labor force
- Export and export
- Preference change
 - Final consumption, investment, ...

Application of AIM/Material Model

- Economic impacts due to environmental preservation
 - CO2 reduction (Kyoto target), waste reduction, waste water treatment, ...
- Mitigation by countermeasures
 - Environmental investment, preference change, new technology, tax reform, CDM, ...
- Link with bottom up model such as AIM/Emission

Part 2: Application to India

- Sectors
 - From 26 commodities, 24 sectors
 - To 40 commodities, 33 sectors
- Electricity sector
 - Disaggregated
- Pollutants
 - Wastewater
 - Sox
 - CO2
 - Solid waste
- Time period till 2030

Baseline trends

Base₃line trends

Scenarios

GDP Change over baseline

s_w constraint environment innovation

Future works of AIM/Material

- Part 1: Modification
 - Application to other countries
- Part 2: Application to India
 - New scenarios of environmental innovation
 - CDM scenarios
 - Link to bottom-up model