

Strategic Database for Energy APEIS-IEA Project

The 9th AIM International Workshop 13-14, March 2004

Go Hibino Fuji Research Institute Corporation

Strategic Database for Energy APEIS-IEA Project

1. Procedure for estimating future environmental pressure with using SDB

Structure of SDB

Narrative Description Card

Narrative Description

Sales Campaign for Hybrid Vehicle

Hybrid type gasoline vehicle

The hybrid system proven in Toyota's "PRIUS", the world's first mass-produced hybrid car, achieves its highly efficient operation through sophisticated energy management of a gasoline engine and secondary battery.

When the car stops, the gasoline engine stops too, instead of just idling and wasting energy. During start-up and at low speed, gasoline engine *efficiency is low, so the car runs on its electric motor, which draws* electricity from the secondary battery. At faster speeds, the gasoline engine propels the vehicle. But the system gives priority to operating the engine only within its most efficient rpm range, so engine power may not be sufficient when the car accelerates. At such times, therefore, the motor provides assistance to make up for the shortage, drawing electricity from the secondary battery. If, on the other hand, the car cruises at a steady speed, the engine, which operates with priority placed on efficiency, may produce more energy than is needed. In this case, such excess energy is used to generate electricity, which is stored in the secondary battery. If the accelerator is let up on to slow down, the engine stops automatically to avoid wasting energy. And during deceleration through braking and other means, the car's forward momentum is used to generate electricity, which is stored in the secondary battery.

Price is <u>2,150,000 yen</u> and higher by <u>300,000 yen</u> than conventional type. Fuel efficiency is <u>30km/l</u>.....

• Literature searching

Interview with experts

Format

- Present: Free
- Future: Free form & Access

Task 1: Draw up environmental innovation strategies

Data Card

Task 2: Translate narrative description to systematic and quantitative data

Ben	Content	Format	Code	Value	Memo
Name of activity	Code of activity	(AN06)	AQ*	AQ_TEMVES	Hybrid garaline vehicle
Subject of activity	Code of subject	(AN16)	OBJCT	RES_TRMV	Family budget
Unit of activity	Code of unit	(AN16)	UNIT	KPIDA	1000 person-km
Activity in reference year	Activity	(17)	QACTE	0	
Price per activity	Function of	(GAMS)	PWCT	0	
	accompanying variables				
Tass on activity	Function of	(GAMS)	TAX	0	
	accompanying variables				
Start year of activity	Start year of activity	0	YSTAC	2008	
End year of activity	End year of activity	0	YEDAC	9999	
aflow/Outflow(1)					
Name	Code of flow	(AN16)	FL*	FL_TPMVHB_TPMV	Passenger transportation
Confluence of In/Outline alread	Cade of confinence	(AND 0)	CF*	CF_TPMV	
laput/Dalput	INCUT	(D0)	FLDIR	0	Output
Conductance in Reference Year	Canductance	(F)	FLCDI	15	
Conductance	Function of	(GAMS)	CDCHG		
	accompanying variables				
Tax on flow	Function of	(GAMS)	TAX		
	accompanying variables				
Inflow/Outflow (2)					
Name	Cade of flow	(ANTE)	10.4	PL_OIL_TPMVHB	Gasoline (tae)
Confluence of In/Outflaw ahead	Code of confluence	(AN16)	CF*	CF_OIL	
Input/Oniput.	INCOT	(00)	FLDIR	1	Input
Conductance in Reference Year	Conductance	(F)	FLCDI	-0.45	(25km%)
Conductance	Function of	(GAMS)	CDCHG	1+ TR_AIP	
	accompanying wariables			-	
Tax on flow	Function of	(GAMS)	TAX		
	accompanying variables				

Combination of Data Card

Example of Data Card (1)

Activity Card – Hybrid gasoline Vehicle

Item	Content	Format	Code	Value	Memo
Name of activity	Code of activity	(AN16)	AQ*	AQ_TPMVHB	Hybrid gasoline vehicle
Subject of activity	Code of subject	(AN16)	OBJCT	RES_TRMV	Family budget
Unit of activity	Code of unit	(AN16)	UNIT	KPKM	1000 person-km
Activity in reference year	Activity	(F)	QACTO	0	
Price per activity	Function of accompanying variables	(GAMS)	PACT	0	
Tax on activity	Function of accompanying variables	(GAMS)	TAX	0	
Start year of activity	Start year of activity	(I)	YSTAC	2000	
End year of activity	End year of activity	(I)	YEDAC	9999	
Inflow/Outflow(1)					
Name	Code of flow	(AN16)	FL*	FL_TPMVHB_TPMV	Passenger transportation
Confluence of In/Outflow ahead	Code of confluence	(AN16)	CF*	CF_TPMV	
Input/Output	IN/OUT	(I/O)	FLDIR	0	Output
Conductance in Reference Year	Conductance	(F)	FLCD0	15	
Conductance	Function of accompanying variables	(GAMS)	CDCHG		
Tax on flow	Function of accompanying variables	(GAMS)	TAX		
Inflow/Outflow(2)					
Name	Code of flow	(AN16)	FL*	FL_OIL_TPMVHB	Gasoline (toe)
Confluence of In/Outflow ahead	Code of confluence	(AN16)	CF*	CF_OIL	
Input/Output	IN/OUT	(I/O)	FLDIR	Ι	Input
Conductance in Reference Year	Conductance	(F)	FLCD0	-0.48	(25km/L)
Conductance	Function of accompanying variables	(GAMS)	CDCHG	1+ TR_ATP	
Tax on flow	Function of accompanying variables	(GAMS)	TAX		

Example of Data Card (2)

Confluence Card – Gasoline

Item	Content	Format	Code	Value	Memo
Name	Code of confluence	(AN16)	CF*	CF_OIL	
Subject of activity	Code of subject	(AN16)	OBJCT		
Unit of flow	Unit of flow	(AN16)		TOE	toe
Flow price in reference year	Price per flow	(F)	PCNF0		
Condition of balance	YES/NO	(Y/N)		N	
Maximum allowable preference	Change rate of maximum	(GAMS) MXSCG			
	allowable preference				
Gush price	Function of	(GAMS)	σπρωπ	0.11+0.02*	
	accompanying variables			(TIME-2000)	51 1/100

Demand scenario data card: Passenger transportation by motor vehicle

Item	Content	Format	Code	Value	Memo
Name of scenario	Code of scenario	(AN16)	SND*	SND_TMPV	
Flag of activation	YES/NO	(Y/N)	SNACT	Y	
Code of demand type	Code of confluence	(AN16)	SNCNF	CF_TMPV	
Demand quantity (1)	(Year, Value)	(I, F)	QSND	(2000, <u>xxxxx</u>)	
Demand quantity (2)	(Year, Value)	(I, F)	QSND	(2020, xxxx)	
Demand quantity (3)	(Year, Value)	(I, F)	QSND	(2050, <u>xxxx</u>)	

Design of scenario

Cooling service per

Fuel cell cogeneration

Fuel cell cogeneration

Freight transportation

Fuel cell vehicles

Passenger transportation

Information appliances per

household

household

Floor space

Power generation Nuclear power plants

Commercial

Transp ortation

(2000 = 100)

(2000 = 100)

(million kW)

(million m²)

(million kW)

(%)

(M W)

(mil. pass.-km)

(million t-km)

145

128

0

0

0

593

53,248

1,804

1,387

137

116

0

0

0

1,710

1,343

544

57.546

145

122

1

1

0

559

49.580

1,796

1,367

133

116

0

0

0

506

44.917

1,702

1,323

and develop socio-economic scenario

Socio-Economic Scenarios in passenger transportation sectors A2 Market economy-based system that Economic development along the same emphasizes economical rationale. lines as existing social system Suburban sprawl High economic growth \rightarrow Increase of passenger vehicle trans. \rightarrow Increase of passenger transportation Stagnation of technological innovation Remarkable technology innovation Without consumer 's awareness regarding \rightarrow H2 fuel cell vehicle environmental issues H2 produced from fossil fuel **B2 B1** ► To achieve both economic development and Regions coexist symbiotically with indedematerialization through tech. innovation pendent and sustainable production area. → Virtual communication system (Cyber Compact Cities office) \rightarrow Increase of public transportation Shift to environmentally harmonious lifestyle \rightarrow Bikeway Remarkable technology innovation \rightarrow Eco-drive license \rightarrow Bio-ethanol \rightarrow H2 fuel cell vehicle Decease of transportation distance by car H2 produced from NG and renewables \rightarrow Advanced car sharing system

Simulation

Task 4: Simulate future environmental pressures and analyze effect of strategies

Strategic Database for Energy APEIS-IEA Project

2. Estimating future environmental pressure with using SDB in passenger transportation sector

. Estimating future environmental pressure with using SDB in passenger transportation sector

CO2 emission is estimated by SDB

. Estimating future environmental pressure with using SDB in passenger transportation sector

Advanced Eco-driving Navigation System

* Research of Japan's Ministry of the Environment in 2003 shows that eco-driving navigation system decreases CO2 emission by 5%.

. Estimating future environmental pressure with using SDB in passenger transportation sector

Advanced Eco-driving Navigation System

Eco-driving navigation system that provides information about both Eco-drive and high efficiency vehicle contributes to CO2 reduction

Virtual Communication System Advanced Car Sharing System

Virtual Communication System Advanced Car Sharing System

•Hybrid vehicles are selected.

Introduction of both virtual communication system and advanced car sharing system contributes to CO2 reduction.

Strategic Database for Energy APEIS-IEA Project

Final note

Final note

- If we take stopgap measures for reduction of environmental pressure with using technologies on the present socio-economic system, large effect can not be achieved on the neither economy side nor environment side.
- It is necessary for breakthrough that technological innovation and social innovation should be combined.
- Eco-driving navigation system, virtual communication system and advanced car sharing system are examples of technology that induce social innovation.
- SDB is the excellent tool for quest of technological and social innovation. We will analyze idea of innovation strategy with using SDB and show effective Asian environmental innovation strategies.

Strategic Database for Energy APEIS-IEA Project

Fin