The 10th AIM International Workshop

Global Warming and Monthly Water Balance Change in Korea - Interim findings -

2005. 3. 10

Hui Cheul JUNG, Seong Woo JEON(KEI) Dong Kun LEE(SNU)

Research Objective

The goal is to :

- 1. Identify the characteristics of large spatial scaled input climate data for regional impact study by each GCM,
- Identify the characteristics of potential runoff change will be affected by climate variables to get the useful information for direction of model development

Global Climate Model

Table 1. Tested GCM result from IPCC and NIES

No. Scenario	GCM	Acronym	Nation	A-res.	Time-peri	od
1 SRESA1 C	SIROMk2	CSIRO	Australia	3.2*5.6	1990-2100	Μ
2 SRESA1 C	CSR/NIES2	CCSR/NIES	Japan	5.6*5.6	1890-2100	Μ
3 SRESA2 H	adCM3	UKMO	UK	2.5*3.75	1950-2099	Μ
4 SRESA2 C	SIROMk2	CSIRO	Australia	3.2*5.6	1990-2100	Μ
5 SRESA2 C	GCM2	CCCma	Canada	3.8*3.8	1900-2100	Μ
6 SRESA2 C	CSR/NIES2	CCSR/NIES	Japan	5.6*5.6	1890-2100	Μ
7 SRESB1 C	SIROMk2	CSIRO	Australia	3.2*5.6	1990-2100	Μ
8 SRESB1 C	CSR/NIES2	CCSR/NIES	Japan	5.6*5.6	1890-2100	Μ
9 SRESB2 Ha	adCM3	UKMO	UK	2.5*3.75	1950-2099	Μ
10 SRESB2 C	SIROMk2	CSIRO	Australia	3.2*5.6	1990-2100	Μ
11 SRESB2 C	GCM2	CCCma	Canada	3.8*3.8	1900-2100	Μ
12 SRESB2 C	CSR/NIES2	CCSR/NIES	Japan	5.6*5.6	1890-2100	Μ
13 SRESA2 N	IESRAMS	NIESRAMS	Japan	60km	2041-2050	M/D

Climate model validation

Republic of Korea

Democratic People's Republic of Korea

* Temperature data are regionally interpolated to 5km with DEM

Figure 1. The area averaged monthly mean observed and simulated temperature

Climate model validation

ROK

DPRK

Figure 2. The area averaged monthly mean observed and simulated precipitation

Future climate change

Figure 3. The future(2041-2050) change of area-averaged temperature in South Korea

Future climate change

Figure 4. The future(2041-2050) change of area-averaged precipitation in South Korea

Soil Water Balance Model

- Grid-based simple soil water balance modeling
- Yearly mean runoff change with monthly time step
- Soil water balance model for large basin (AIM, 1997)

RO = SM + Pr + Rs - PET - FC

where, RO(runoff), Pr(rainfall), Rs(snowmelt),

PET(potential evapotranspiration) and FC(Field Capacity) in the cell

Soil Water Balance Model

Major Basin Information

Table 2. Major Basin Information of Korea

No	o. Basin	Area(km ²)	PPT(mm)	RO(mm)	RO ratio
1	Han	26,018	1,301	723	55.8%
2	Nackdong	23,728	1,186	580	48.9%
3	Kum	9,810	1,272	676	53.1%
4	Sumjin	4,897	1,412	801	56.8%
5	Yungsan	3,429	1,318	800	60.7%

* 30yr('69-'98) mean data from water vision 2020 * RO is calculated by Tank model

PPT change for the major basins

Seasonal PPT change

river basin (10yr mean, 2041-2050)

RO change for the major basins

Figure 8. Simulated average annual runoff change by GCM (10yr mean, 2041-2050)

Thank You!