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Outline of AIM for climate change analysis
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Climate change based on present
International agreement
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Climate change based on present
international agreement
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Climate change based on present
international agreement
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Climate change based on present
international agreement
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Obtaining reliable projections of
climatic change at the regional scale is
the central issue within the global
change debate.

In order to assess the social and
environmental impacts of climate
change and to develop suitable policies
to respond to such impacts,
information about climate change is
needed not only at a national level, but
on a regional and local scale as well.




Future Climate Change Scenarios

The estimates of human induced global
warming by the IPCC are based on the premise
that the growth rate of atmospheric greenhouse
gases will accelerate in the future.

According to most recent estimates by IPCC,
the average global surface temperature Is
projected to increase by between 1.4° and
3° C above 1990 levels by 2100 for low
emission scenarios and between 2.5° and
5.8° C for higher emission scenarios of
greenhouse gases in the atmosphere.




Variations of the earth’s surface temperature: 1000 to 2100

Departures in temperature in °C {from the 1961-1990 average)
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Sea level rise due to global warming
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Seasonal Temperature Anomalies ("C) [Base Period 1951-80]




1970-2003 Seasonal Temperature Trends ('C/decade)
Dec(2002)-Jan-Feh(2003} :




Annual Global Precipitation Anomalies

January - December, 1900 - 2001
BOp————T7 77—+ 30

— Filtered Values

50.0 F I Wetter than Narmal _ 20
g Drier than Mormal 1
25.0f \m 11.0
: | ‘ M1
E 0.0fr j)h\ f. ) .UlV | )\JK 0.0
| /\ A \“( I 1./
2500, M 1-1.0
i |
-50.0 Based on {20

1200-2000 mean

__? i -| a § 3 || i 2 i | B i B 1 B § i || & F § 1 - o ¥
>{900 1920 1940 1960 1980 2000 =Y

Year

Inches



precipitation change (%)

preciptation change (%)

INDIAN SUBCONTINENT
Climate Change in 21st Century
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Regional Pattern of Changes in Maize Yield by 2080s
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Global climate modeling has undergone a
steady development during the last three to
four decades.

However, current uncertainties remain very
high in the projection of regional climate
change.

This is due to the complexity of the
processes that determine regional climate
change, and the need for more comprehensive
modeling tools and research strategies to
address this problem.



Both topography and the land surface conditions
strongly affect the surface climate change signal
at scales smaller than the grid interval of A-O
GCMs.

This implies that the information obtained from
A-O GCMs needs to be used cautiously in studies
of the impacts of climate change, particularly in
regions that are characterized by pronounced
variability in forcings on fine scales.

The potentials and limitations of different
regionalisation techniques need to be well
understood before they are applied to the
construction of specific regional climate change
scenarios.




The primary tools today available to simulate
long-term climate change are known as coupled

A-O GCMs.

These are 3-D mathematical representations of
the global atmosphere-ocean-sea ice system.

Limitations in computer power force the
horizontal grid interval of present day A-O
GCMs to be about a few hundred kilometres.

As a result, processes and atmospheric
circulations occurring at smaller scales cannot be
explicitly described.



None-the-less, current A-O GCMs have
performed relatively well in reproducing many
basic characteristics of the general circulation,
such as major belts of precipitation in the
tropics or the seasonal migration of mid-
latitude storm tracks.

These climate models have also shown some
success in describing the El Niflo Southern
Oscillation and North Atlantic Oscillation
phenomena and related teleconnection patterns,
although significant improvements are still
needed.



The cooling factors
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Climate Variability ¥

o

North Atlantic
Oscillation

The interactions between atmosphere and oceans in the tropics dominate the variability
at inter-annual scales. The main player is the variability in the equatorial Pacific. Wave-
trains of anomaly stem from the region into the mid-latitudes, as the Pacific North
American Pattern (PNA). The tropics are connected through the Pacific SST influence on
the Indian Ocean SST and the monsoon, Sahel and Nordeste precipitation. It has been
proposed that in certain years the circle is closed and and a full chain of teleconnections
goes all around the tropics. Also shown is the North Atlantic Oscillation a major mode of
variability in the Euro-Atlantic sector whose coupled nature is still under investigation.
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Indian Ocean temperatures affect intensity
of the Indian monsoon and rainfall

« A phenomenon “the Madden Julian Oscillation
(MJO)” in the atmospheric circulation explains
variations of weather in the tropics and regulates
the intensity of rainfall and break conditions
associated with the south Asian monsoons.

 The fluctuations the MJO involve variations in
wind, SST, cloudiness, and rainfall. The MJO can
be characterized by a large-scale eastward
movement of air in the upper troposphere with a
period of about 20-70 days, over the tropical
eastern Indian and western Pacific Oceans at
approximately 200 hPa in the upper troposphere.
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While drought conditions prevailed in Vidarbha
(in the state of Maharashtra) during June and
July 2002, heavy downpours in August
amounted to 80 cm of rainfall, compared to 95
cm of normal seasonal rainfall.

On 2-3 September, 25 cm of rainfall was recorded,
which lifted the water level of Sardar Sarovar

dam along the Narmada River to 12 m above its
full capacity of 95 m, inundating hundreds of
villages in the region.

The monsoon wreaked havoc in seven districts
of Maharashtra from 1 to 3 September 2002,
claiming 35 lives and causing massive damage
to crops and throwing normal life out of gear.



Different ‘regionalisation’ techniques have
therefore been developed over the last
decade or so to improve the regional
Information provided by coupled A-O
GCMs, and to provide climate information
at a finer scale.

Such techniqgues can be classified into
three categories:

1. Statistical downscaling methods;

2. ‘Nested’ limited area (or regional)
climate models;

3. High and variable resolution ‘time-slice’
AGCM experiments.



Statistical Downscaling

Under this approach, regional or local climate
information is derived by first developing a
statistical model which links large-scale climate
variables (or 'predictors’) to regional and local
variables (or ‘predictands’).

The large-scale output of an A-O GCM simulation is
then fed into this statistical model in order to
estimate the corresponding local and regional climate
characteristics.

A range of such statistical downscaling models have
been developed for regions where sufficiently good
datasets are available to allow the models to be
properly calibrated. These techniques are currently
used for a wide range of climate applications.




One of the main advantages of statistical downscaling techniques is
that they do not require large amounts of computational resources.
Another advantage is that they can be used to provide information at
specific locations.

However, statistical downscaling methods are based on empirical
models and not on models that explicitly describe the physical
processes that affect climate and this may limit their applicability.

In addition, the major theoretical weakness of statistical downscaling
methods Is that the fundamental assumption on which they are based
— that the statistical relationships developed for present-day climate
also hold under the different forcing conditions of possible future
climates — Is often not verifiable.




Nested Regional Climate Models

These can be visualized as providing a high-resolution
zoom in effect over a selected region.

Up to now, this technique has only been used in one
direction, that is with no feedback from the regional
climate model to the global climate model.

These have proven to be flexible tools, capable of
reaching high resolution (down to 10-20 km or less)
and simulation times of several decades.

They have also been able to describe successfully
climate feedback mechanisms acting at the regional

scale.




PRECIPITATION PATTERNS

JJAS from GCM and RCM control climates, and observations

Hadley Centre GCM Hadley Centre RCM CRU Climatology




BREAK-ACTIVE PRECIPITATION

wind vectors (m/s) are (mean active) - (mean break)
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More rainfall in Tamil Nadu during monsoon break event



CYCLONE SIMULATION

Pressure (hPa) and wind fields (m/s) every 6h from control run
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COASTAL SURGES DUE TO TROPICAL STORMS
IN BAY OF BENGAL CAN BE PREDICTED
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RAINFALL CHANGE OVER SOUTH ASIA

as simulated by Regional Climate Model
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BANGALORE
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215" Century Changes in Monsoon
Rainfall under A2 and B2 Scenarios
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Annual Bainfall {cm)

PRECIS Simulations of Present and Future Precipitation

Annual Rainfall over Major River Basins
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Nested Regional Climate Modeling approach,
however, has some theoretical imitations.

For example, the regional model simulations are
affected by systematic errors in the driving
meteorological fields provided by global models,
and two-way interaction between regional and
global climate Is not described.

In addition, for each application, careful
consideration needs to be given to the ways that
the models are configured.

From the practical viewpoint, regional model
simulations can be demanding on computational
resources, both in terms of computation power
and data storage.




Variable Resolution Models

The main advantage of this tool is that the
resulting simulations are globally consistent
and capture the feedback from the regional
high resolution atmospheric circulations on
the global climate.

The use of this technique is based on the
assumption that the large-scale circulation
patterns in both the coarse and high
resolution GCMs are not very different from
each other.



Conformal-cubic model features

2-time-level semi-implicit hydrostatic (recently, has non-hydrostatic option)

- semi-Lagrangian horizontal advection with bi-cubic spatial interpolation
- total variation diminishing (TVD) or semi-Lagrangian vertical advection
- unstaggered grid, with winds transformed to/from

-C-staggered positions before/after gravity wave calculations using

reversible interpolation

- minimal horizontal diffusion needed:
- Smagorinsky style; zero is fine

- weak off-centering (in time) used to avoid semi-Lagrangian "mountain
resonances"

- careful treatment of surface pressure and pressure-gradient terms near
terrain
- a posteriori conservation of mass and moisture

- grid is isotropic



Physical Parameterizations

- cumulus convection:
-new CSIRO mass-flux scheme, including downdrafts

- includes advection of liquid and ice cloud-water

- interactive cloud distributions
- derived prognostically from liquid water

- 6FDL parameterization for long and short wave radiation
- gravity-wave drag scheme

- stability-dependent boundary layer and vertical mixing with non-
local option

- vegetation/canopy scheme
- 6 layers for soil temperatures
- 6 layers for soil moisture (Richard's equation)

- option for cumulus mixing of trace gases
- diurnally varying skin temperatures for SSTs



8 km trial simulation over Fiji

Model uses NCEP fields at all grid points.
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For these fine-resolution simulations, "global nudging” from the broad-scale
fields is the preferred strategy. All the Fiji land points have soil type 3 (fine
clay) and vegetation type 32 - broadleaf evergreen trees (tropical forest).



Monthly Simulated Maximum Surface Air Temperature Climatology - Fiji
(The observed temperature gradients between western and central divisions during the year and low
temperatures at high altitude are realistically simulated by the model)
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Monthly Simulated Minimum Surface Air Temperature Climatology - Fiji

(The observed temperature gradients between western and central divisions during the year and

low femperature

s at high altitude a
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Comparison of observed and simulated
average monthly surface air temperatures

e C-CAM Maximum Surface Air Temperature
= Obs 10 Year Mean (1975-1984) - Nadi, FIJI
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Temperature, deg C

Temperature, deg C

Comparison of intraseasonal and interannual
variability in monthly mean simulation of surface
air temperatures at Nadi and Nausori

Observed and model simulated suface air temperatres at Mausor
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Monthly Simulated Rainfall Climatology - Fiji

The observed rainfall gradients between western and central divisions during the year, marked seasonality in rainfall in the western
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Comparison of observed and model-simulated annual and seasonal mean rainfall (mm)
at selected stations in Fiji

Observed Simulated (Expt. 1) | Simulated (Expt. 2)

Nadi Annual 1701:344.7% 10661641 (0.74)F 12622241 (0.73)
Summer 1242:338.8 3081470 954:171.6
Winter 450167 .0 258456 1 30B+76.2

Suva Annual 31755999 3395:307.3 (0.45) 2814+403.3 (0.52)
Summer 20114016 19711787 1789:2729
Winter 1164+401.3 1424+282 8 1024+237 3
Nausori | Annual 2971:456.3 2950:289.9 (0.55) 2416+350.9
Summer 19162254 17611610 1532:2658
Winter 10562941 1190+258.4 334:188.8

Udu Point | Annual 254545333 1450+304.7 (0.56) 1804+311.4 (0.59)
Summer 17373668 A61+1429 115241785
Winter H0B:264.8 539:184.2 653:168.4

# Stondard deviation for 10 year rainfall data: * Correlation Coefficient with observed monthly rainfall data




Monthly Total Rainfall, mm

Monthty Total Rainfall, mm

Observed and Simulated interannual
variability of monthly total Rainfall at
selected locations in Fiji
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Variable-resolution global models are well-suited to
perform the simulations “traditionally” performed by
limited-area RCMs, whilst avoiding the usual lateral
boundary problems.

The variable-resolution global model C-CAM has
demonstrated substantial skill in reproducing many
observed features of the Fiji’'s climatology (precise
reasons for biases in temperature/rainfall are being
Investigated).

Recent modelling advances and greater computing
power can now allow regional climate simulations
down to around 8 km resolution (very relevant for
Pacific Island Countries).



To Conclude:

A coherent picture of regional climate
change for its application to impact
assessments, achieved through available
regionalisation techniques, will require more
coordinated efforts to evaluate the
different methodologies, compare methods
and models to each other and apply these
methods to climate change research in a
comprehensive strategy that involves a
range of A-O GCM and regionalisation
experiments.
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