Reduction Balance Table (RBT)

Reina Kawase Kyoto University

10-12, March, 2005
The 10th AIM International Workshop
At Ohyama Memorial Hall
National Institute for Environmental Studies, 305-8506, Tsukuba, Japan

Outline of RBT

Example of Result

Annual average change rate

Decomposition of CO₂ emission (1)

Carbon Intensity
$$C = \frac{C}{CS} \cdot \frac{CS}{PE} \cdot \frac{PE}{FE} \cdot \frac{FE}{A} \cdot A$$

$$= S \cdot i \cdot e_p \cdot e_f \cdot A$$
Energy Intensity of final demand sector

C: CO2 including CCS, CS: CO2 excluding CCS,

PE: Primary energy, FE: Final energy, A: GDP

Decomposition of CO₂ emission (2)

Decomposition of changes in CO₂ emission

$$\frac{\Delta C}{C} = \frac{\Delta s}{s} + \frac{\Delta i}{i} + \frac{\Delta e_p}{e_p} + \frac{\Delta e_f}{e_f} + \frac{\Delta A}{A} + \text{residual}$$

$$\frac{1}{c} = \frac{\Delta s}{s} + \frac{\Delta i}{i} + \frac{\Delta e_p}{e_p} + \frac{\Delta e_f}{e_f} + \frac{\Delta A}{A} + \text{residual}$$

$$\frac{1}{c} = \frac{\Delta s}{s} + \frac{\Delta i}{i} + \frac{\Delta e_p}{e_p} + \frac{\Delta e_f}{e_f} + \frac{\Delta A}{A} + \text{residual}$$

$$\frac{1}{c} = \frac{\Delta s}{s} + \frac{\Delta i}{i} + \frac{\Delta e_p}{e_p} + \frac{\Delta e_f}{e_f} + \frac{\Delta A}{A} + \text{residual}$$

$$\frac{1}{c} = \frac{\Delta s}{s} + \frac{\Delta i}{i} + \frac{\Delta e_p}{e_p} + \frac{\Delta e_f}{e_f} + \frac{\Delta A}{A} + \text{residual}$$

$$\frac{1}{c} = \frac{\Delta s}{s} + \frac{\Delta i}{i} + \frac{\Delta e_p}{e_p} + \frac{\Delta e_f}{e_f} + \frac{\Delta A}{A} + \text{residual}$$

$$\frac{1}{c} = \frac{\Delta s}{s} + \frac{\Delta a}{A} + \frac{\Delta$$

Japan's existing scenarios

Japan has the medium-term scenarios towards 2030.

- * Ministry of the Environment •
 - Four socio-economic scenarios (based on SRES)
- * Ministry of Economic, Trade and Industry
 - Long-term energy supply and demand outlook
 - (to estimate effects of some measures)
- * Citizen's Open Model Projects for Alternative and Sustainable Scenarios (NGO)
 - Towards a sustainable energy society

These scenarios are not the long-term scenarios and are not a scenarios for climate stabilization.

Introduction

 Japan started to develop its long-term climate stabilization scenario toward 2050 in April 2004.

 Many European countries have issued the national long—term scenarios toward 2050. Their ambitious targets of CO₂ emission reduction are aiming at a decrease of more than 50% of today's emission.

National long-term scenarios

Country	Agency	Base Year	Target Year	Reduction Target from Base Year
France	Interministerial Task Force on Climate Change (MIES)	1990	2050	CO ₂ : 75%
Germany	Enquete Commission	1990	2050	GHG: 80%
	Advisory Council on Global Change (WBGU)	1990	2050	CO ₂ : 80%
United Kingdom	Dept. of Trade and Industry (DTI)	2000	2050	CO ₂ : 60%
	Royal Commission on Environmental Pollution	1997	2050	CO ₂ : about 60%
The Netherlands	The National Institute for Public Health and the Environment (RIVM)	1990	2050	GHG: 80%
Sweden	Ministry of the Environment	1990	2050	GHG: 50-60%
Finlnad	The National Technology Agency	1990	2030	CO ₂ : 20%(10-30)
Canada	Natural Resources Canada	1990	2050	GHG : about 50%

Objectives of Research

Objectives:

In order to develop Japan's long-term climate stabilization scenario, analyze the long-term climate stabilization scenario in foreign countries and the medium-term scenarios in Japan by RBT.

Target:

Germany, France, United Kingdom, Japan

Characters of Scenarios

Agency	Scenarios	Charactors		
Japan, APERC	EDSO 2002	BaU		
Japan, MOE	A1、A2、B1、B2	BaU		
Japan, METI	Renewables, Saving energy	Promotion of renewables or saving energy		
	Nuclear high, low	Difference rate of nuclear introduction		
	Economic growth high, low	Difference rate of economic growth		
	Combine options	Economic growth high, saving energy, nuclear low		
Japan, COMPASS	Boiled frog	BaU		
	Revival	Achive goals under the present socioeconomic system		
	Switchover	Socioeconomic paradigm shift toward a slow society		
France, MIES	w∕o Eco	BaU		
	Eco w/o fuel switching	Without fuel switching, with improved energy efficiency		
	Supply	Involving a supply-driven response to climate change		
	Gas turb	40% gas turbines share of electricity production		
	F4 nuclear	Increased nuclear development		
	F4 RCogN	Combing the use of nuclear, CHP, renewables		
	F4 Sequestr	Maintaining large-scale fossil fuel use + CCS		
	F4 w/o N+Seq	Abandoning nuclear power + CCS		
	F4 H2	Hydrogen production network using nuclear power		
Germany,	Reference	Continuation of the current energy policy		
Enquete	Efficient Conversion	Accelerated increase of fossil fuels use efficiency, CCS		
Commission	RES/EEU Initiative	Phased out of Nuclear power, promotion of renewables		
	Fossil-Nuclear Energy Mix	Construction of new nuclear power stations after 2010		
UK, DTI	Baseline45、60、70	Current values of society remain unchanged		
	World Markets45、60、70	Globalisation , Scant regard for the global environment		
	Global Sustainability45、60、70	Strong collective environmental action		

GDP

Primary energy / final energy

Reduction Balance Table

$$\frac{\Delta C}{C} = \frac{\Delta s}{s} + \frac{\Delta i}{i} + \frac{\Delta e_p}{e_p} + \frac{\Delta e_f}{e_f} + \frac{\Delta A}{A} + residual$$

	Scenario	l (;hange l	Annual - change rate (%/y)	Decomposition of CO ₂ emission (%/y)					
				CO ₂ capture and storage	Carbon Itensity	Conversion Efficiency	Energy Intensity	Activity	Residual
	F4 nuclear	-69.43	-2.34	_	-2.47	0.36	-1.90	1.70	-0.04
	F4 RCogN	-69.75	-2.36	_	-2.29	0.17	-1.91	1.70	-0.03
	F4 w/o N+S	-69.26	-2.33	-1.96	0.21	-0.42	-1.84	1.70	-0.03
	F4 H2	-69.01	-2.32	_	-2.65	0.51	-1.84	1.70	-0.04
	UWE-WI	-75.08	-2.74	-1.35	-0.25	-0.09	-2.40	1.37	-0.01
	RRO-WI	-75.25	-2.75	-	-1.28	-0.15	-2.67	1.37	-0.02
	FNE-WI	-74.97	-2.73	_	-2.26	0.52	-2.33	1.37	-0.03
	BL60	-59.92	-1.81	-0.62	-0.80	0.03	-2.61	2.24	-0.05
	WM60	-59.92	-1.81	-0.28	-1.50	0.16	-3.09	2.99	-0.09
	GS60	-59.92	-1.81	-0.93	-0.23	-0.03	-2.81	2.24	-0.05

France

Germany

>

Comparison with historical data

Decomposition of carbon intensity(1)

$$i = \frac{CS}{PE}$$
 = $\frac{\text{CO}_2 \text{ excluding CCS}}{\text{Primary energy}}$

Contribution of energy type to change of CI

$$\frac{\Delta i}{i} = \sum_{j} \left(\frac{\Delta CS_{j}}{CS} - \frac{\Delta PE_{j}}{PE} \right) + residual$$

Increase of Nuclear Hydro Renewables

→ Contribution to decrease of CO₂ emission

Decomposition of carbon intensity(2)

Towards Japan's long-term scenario

<Condition>

GDP growth: 1.53%

Maximum CCS: 1.21%

CI intensity: 0.68-1.98%

The combination of CI and EI must be set up within the slash zone.

