Some Results of Emission Modeling Studies on Thailand and Indonesia

Ram M. Shrestha, Sunil Malla, Migara Liyanage Asian Institute of Technology and Charles O.P. Marpaung Christian University of Indonesia

The 12th International AIM Workshop, NIES, Tsukuba, Japan 19-21 February 2007

Outline

- 1. AIM related activities at AIT
- 2. Multi-gas emissions inventory of Thailand
- Effects of CO₂ emissions reduction target on energy development and environment in Indonesia
- 4. Concluding remarks

AIM related activities during 2006/07

AIM Related Activities during 2006/07

•AIM/ Enduse model of Thailand and extension of the planning horizon to 2050 under four scenarios.

-Updating the database

- •Multi-gas emissions inventory development of Thailand
 - draft report completed
- •AIM/ Enduse Model Indonesia
 - –Analysis of CO₂ emission reduction targets
- AIM/CGE modeling of Thailand
 - Analysis on effects of energy tax (ongoing)
- •ESS Analysis for Thailand (preliminary version)
- •AIM/ Air analysis of Bangkok (ongoing)
- Preparation of Database for AIM/Enduse–Cambodia- ongoing

Multi-gas Emissions Inventory Development for Thailand

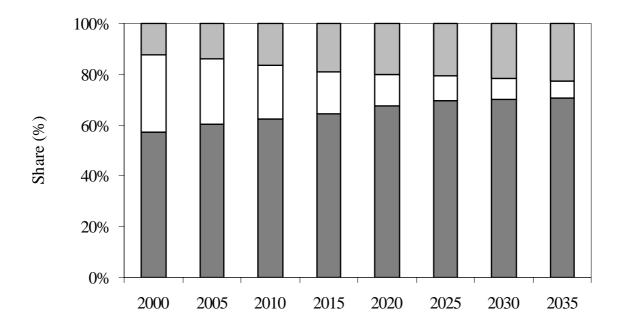
Introduction

• Background:

- First official GHGs emission inventory was carried out in 1990.
- Thailand submitted initial national communication to UNFCCC on November 2000. This initial communication documents the 1994 inventory of GHGs in Thailand based on revised IPCC Guidelines (1996).
- Outline of the present study:
 - CO₂ and non-CO₂ GHGs (NCGGs)
 - GHG emissions source and sink categories:
 - Energy use
 - Industrial processes
 - Agriculture
 - Land use change and forestry
 - Waste
 - Planning horizon: 2000-2035

Approach used

- Energy related emissions based on basic energy output from AIM/Enduse model and revised IPCC guidelines (1996)
- Emissions from Non-energy sources based on data/assessment on level of agricultural activities, livestock population, land use, change in forest cover etc and relevant emission factors

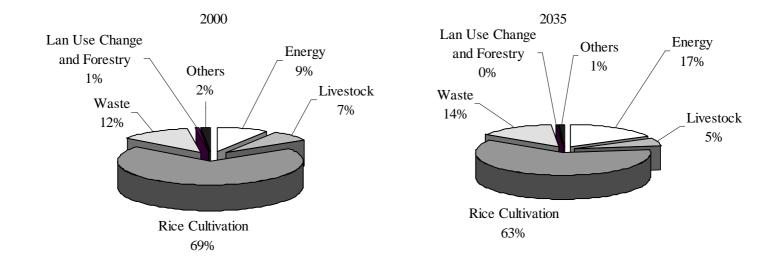

Estimated GHG Emissions during 2000-2035 (in CO2 eq.)

	2000		2015		2025		2035	
Pollutant	Kt	%	kt	%	kt	%	kt	%
CO ₂	276,655	66	486,099	73	670,287	79	1,224,436	83
CH ₄	127,972	30	159,321	24	187,634	19	219,811	15
N ₂ O	15,688	4	18,648	3	20,720	2	22,496	2
CO ₂ equivalent GHG	420,315		664,068		985,512		1,466,743	

- Changes in shares of GHG emissions (between 2000 and 2035):
 - CO₂: 66% to 83% [†]
 - CH₄: 30% to 15% **↓**
 - N₂O: 4% to 2%
- CO₂ equivalent GHG:
 - 420 million ton (2000) to 1,467 million (2035)
- ~ 3.5 times increase

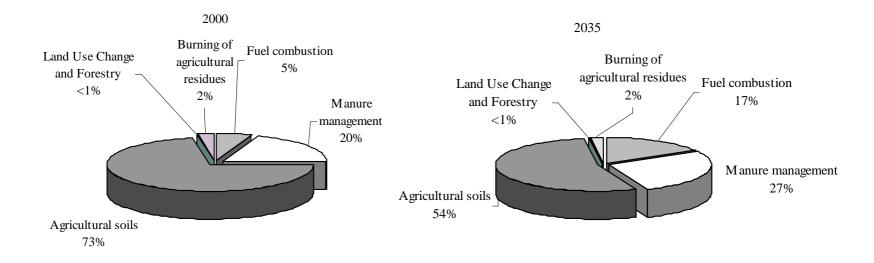
- AAGR 3.6%
- Among the sources of GHG emissions, energy use is estimated to account for 57% of total GHG emissions in 2035 as compared to 55% in 2000.

CO₂ Emission from Fuel Combustion, LUCF and Industrial Processes



■ Fuel Combustion □ Land Use Change and Forestry □ Industrial Processes

Changes in shares of CO₂ emissions from 2000 to 2035:


□ Fuel combustion:	57% to 72% 🕇
Land use change and forestry:	30% to 6% 🕴
Industrial processes:	13% to 22% 🕇

Methane Emission during 2000-2035

- AAGR during 2000-2035: 1.6%
- Changes in shares of methane emission by source during 2000 to 2035 (%): Rice cultivation
 69 to 63
 Energy
 9 to 17
 Vaste
 12 to 14
 Livestock
 7 to 5
- Rice cultivation to account for around two-thirds of methane emissions.
- Increasing share of energy use and waste in methane emissions.

Nitrous Oxide Emission during 2000-2035

- AAGR during 2000-2035: 1.1%
- Changes in shares of N₂O emission by source from 2000 to 2035 (%):
 - Agricultural soil
 73 to 54
 - Fuel combustion
 5 to 17
 - Manure management
 20 to 27 †
- Agricultural soil is the largest contributor to N₂O emission.
- The shares of fuel combustion and manure management are to increase in the future.

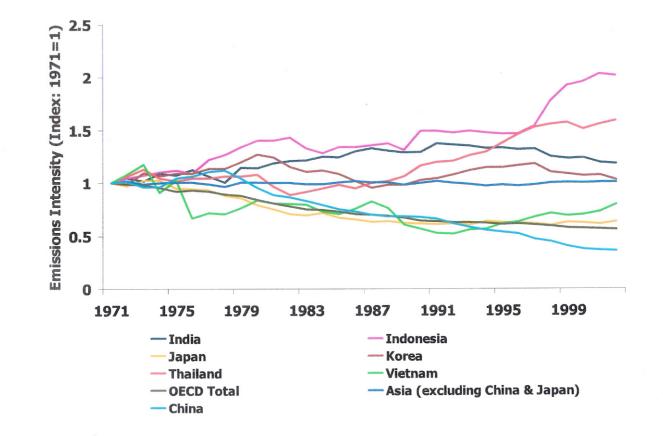
Energy & Environmental Implications of CO₂ Emission Reduction Targets in Indonesia

Outline

- Introduction
- Base case results
- Implications of CO2 reduction
 - Power sector
- Co-benefit of CO_2 Emission Reduction Target
- Conclusion

GDP, Total Primary Energy Supply and CO₂ Emissions in 2002 in Indonesia (IEA, 2004)

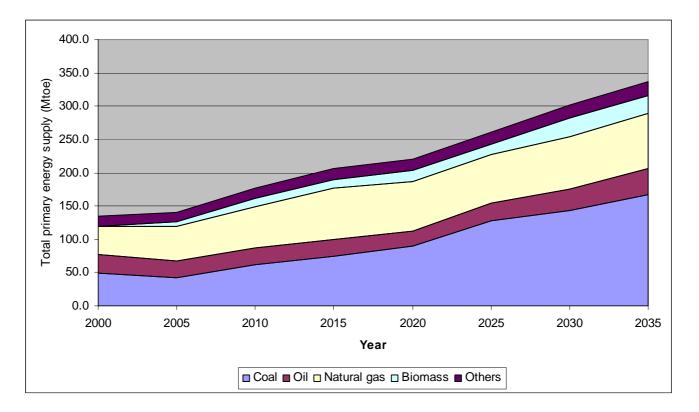
Population (million): 212
GDP (billion 95 US\$ MER): 224
Total Primary Energy Supply (Mtoe): 156
CO₂ emissions (Mton): 303
Emission Intensity CO₂/GDP (kg CO2/95 US\$_{MER}): 1.35
Energy Intensity TPES/GDP (toe/1000US\$_{MER}): 0.70


Growth of GDP, Energy Use and CO2 emissions in Indonesia

AAGR (1991-2000):

- CO2 emission = 7.3%
- GDP constant price 1993 = 4.4%
- TPES = 4.7%
- Final Energy Consumption = 6.4%
- Electricity Generation = 8.3%

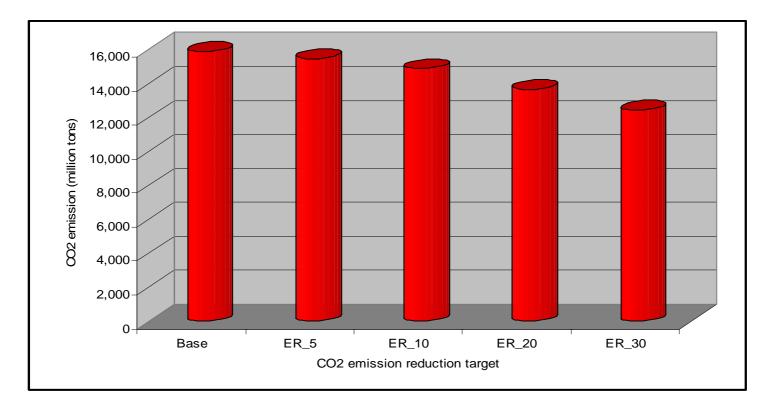
CO2 emission growing much faster than GDP and TPES.


Rapidly growing Indonesian CO₂ Intensity (CO₂ per GDP_{MER})

Source: IEA, 2004

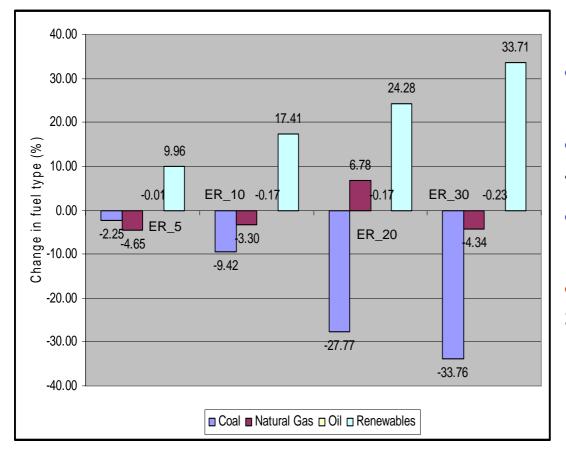
- Period of ER Target Study:
 - 2000 to 2035
- Scenarios considered:
 - Base Case
 - CO₂ emission reduction: 5%, 10%, 20%, 30% (ER_5, ER_10, ER_20, ER_30)
- CO₂ emission reduction is considered from 2013, which is considered as the second commitment period.

Base Case Primary Energy Supply During 2000-2035



Note: Others include hydro and geothermal

•Coal: 36.5% in 2000 to 49.8% in 2035


- •Oil: 21.1% in 2000 to 11.5% in 2035
- •Natural gas: 30.9% in 2000 to 24.6% in 2035
- •Renewables:1.1% in 2000 to 8.2% in 2035

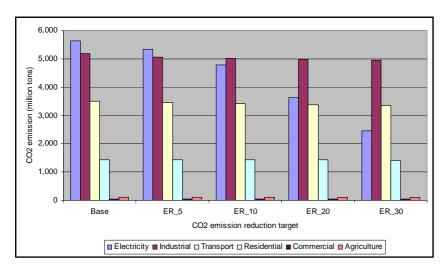
Total CO₂ Emission During 2000-2035 at Selected CO₂ Emission Reduction Targets

Cumulative CO2 emission during 2000-2035 to decrease from about 15,000 Mt to about 12,000Mt in ER_30 case.

Changes in Primary Energy-Mix under CO₂ Emissions Reduction Cases during 2000-2035

•Coal decreases by 33.4% at ER_30

•Natural gas decreases by 4.3% at ER_30

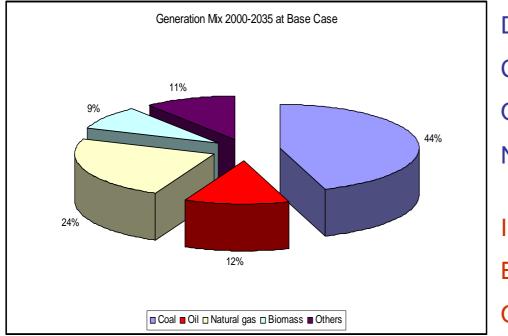

•Oil decreases by 0.2% at ER_30

•Renewables increase by 33.7% at ER_30

Note: Renewables include biomass, geothermal, wind, solar

- "+" means the energy increases compared to the Base case
- "-" means the energy decreases compared to the Base case

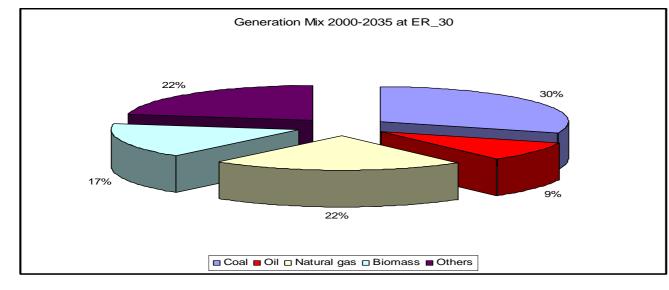
Sectoral Shares in CO₂ Emission during 2000-2035

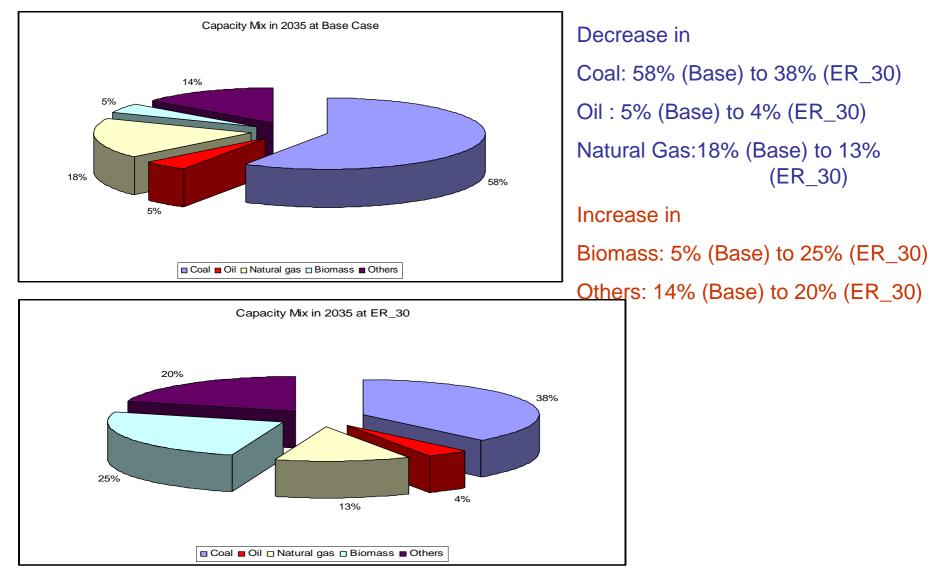


100% 90% Sectoral share to CO2 emission (%) 80% 70% 60% 50% 40% 30% 20% 10% 0% ER 5 ER 30 Base ER_10 ER_20 CO2 emission reduction target Electricity Industrial Transport Residential Commercial Agriculture

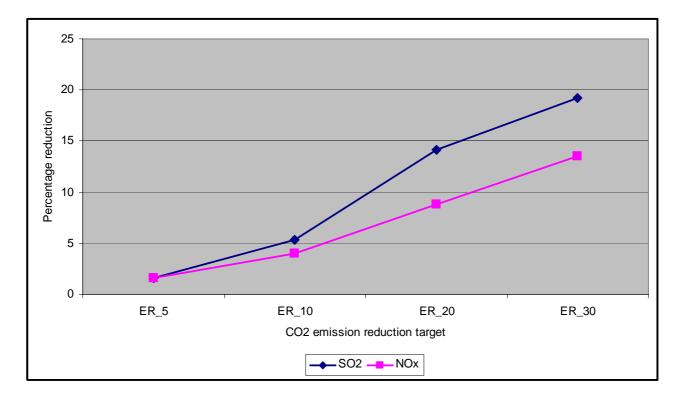
•At Base case and ER_5, the CO_2 emission is mostly from the electricity sector (in the range 34 to 36%).

•At ER_10 and higher, CO_2 emission is mostly from the industrial sector (in the range 33 to 41%)

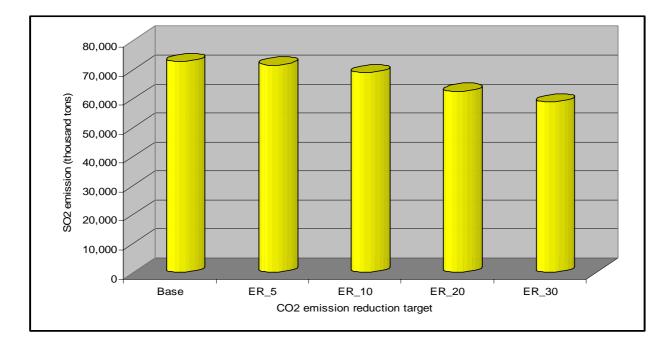

Generation Mix During 2000-2035 at Base Case and ER_30


Decrease in Coal: 44% (Base) to 30% (ER_30) Oil: 12% (Base) to 9% (ER_30) Natural Gas: 24% (Base) to 22% (ER_30) Increase in

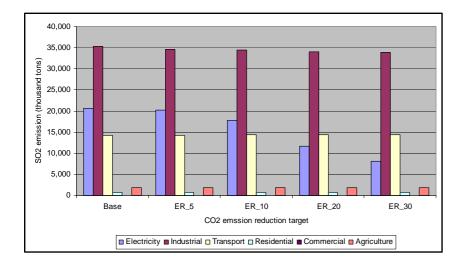
Biomass: 9% (Base) to 17% ER_30)

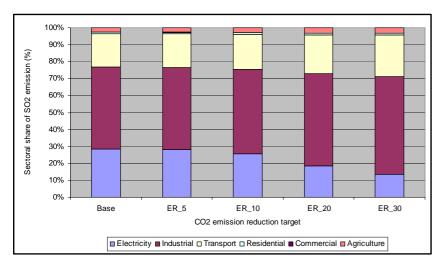

Others: 11% (base) to 22% (ER_30)

Power Generation Capacity Mix in 2035 at Base Case and ER_30



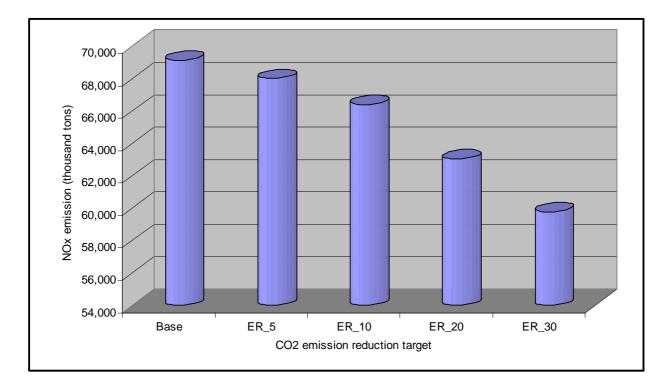
Co-Benefit of CO₂ Emission Reduction Target to Local Pollutant Emissions


•SO₂ emission would be reduced by 1.6% at ER_5 and 19.2% at ER_30.
•NO_x emission would be reduced by 1.64% at ER_5 and 13.6% at ER_30.

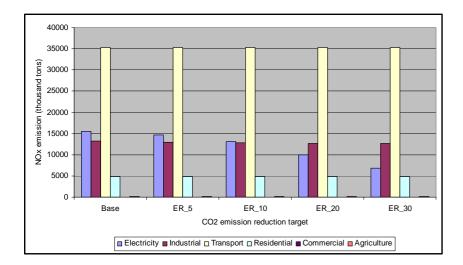

Total SO₂ Emission During 2000-2035 at Selected CO₂ Emission Reduction Targets

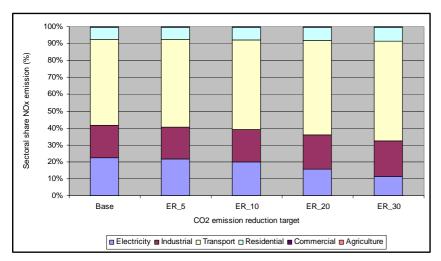
Total SO_2 emission during 2000-2035 in ER_30 case would be about 20% less than that at the Base case

Sectoral Shares in SO₂ Emission During 2000-2035



•The highest SO2 emission during 2000-2035 would be from the industrial sector, i.e., in the range 48 to 58%


•At ER_5 and ER_10, the share of SO2 emission from the electricity sector is higher than that from the transport sector. At ER_20 and higher, transport sector share exceeds the power sector share.


Total NO_x Emission During 2000-2035 at Selected CO₂ Emission Reduction Targets

Total NO_x emission during 2000-2035 in ER_30 case would be about 14% below that in the Base case

Sectoral Shares in NO_x Emission During 2000-2035

•Transport sector contributes the most, i.e. in the range 51 to 60%

•At ER_5 and ER_10, the share of NOx emission from the electricity sector would be higher than that from the industrial sector.

•At ER_20 and ER_30, transport sector share is higher. Recent Energy and Environmental Policy Developments in Indonesia

National Energy Policy

- Based on President Regulation No. 5/2006 on National Energy Policy, the target on energy mix by 2025 is as follows:
 - Oil share less than 20%
 - Natural gas share above 30%
 - Coal share of is more than 33%
 - Biofuels' share more than 5%
 - Geothermal energy share more than 5%
 - The share of new and renewable energy (biomass, nuclear, small scale hydro, solar, wind) is more than 5%
 - The share of liquified coal is more than 2%

DSM Policy

- DSM programs in Indonesia have been implemented based on President Decree No. 43/1991 about Energy Conservation and Energy and Mining Minister Decree No. 100.K/148/M.PE/1995 about National Energy Conservation Plan
- DSM policies include peak clipping-, load shifting- and energy conservation policies

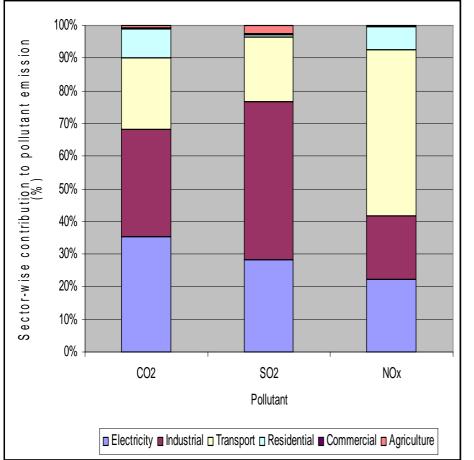
Policies in Transport

- Based on Local Government Policy, monorail will be built in Jakarta
- The bus way in Jakarta will be expanded

Conclusions

- At Base case and ER_5 case, the power sector is the largest contributor to CO₂ emission (34 to 36%) in Indonesia. At higher ER targets cases, the industrial sector becomes the largest contributor to CO₂ emission (in the range 33 to 41%).
- The CO₂ emission reduction from the is mainly due to:
 - fuel shifting to renewable energy, clean coal technologies and the use of CCS in the power sector .
 - fuel shifting from oil to gas in the industrial sector

- fuel shifting from oil to gas and electric vehicles in the transport sector


 The CO₂ emission reduction from the residential sector would happen only at ER_30 i.e. fuel shifting from gas and electric cooker

Conclusions (contd)

- Co-benefit of CO₂ emission reduction target:
 - Total SO₂ emission during 2000-2035 under ER_30 would be about 20% lower than that in the Base case
 - Total NOx emission during 2000-2035 under ER_30 would be about 14% lower than that in the Base case

THANK YOU

Sectoral Contributions to Pollutants Emissions in Base Case during 2000-2035

CO2:

Electricity sector has highest share (35.5%), followed by industry sector (32.3%) and transport sector(22.0%)

SO2:

Industry sector share (48.5%) the highest, followed by electricity (28.3%) and transport (19.6%) sectors.

NOx:

Transport sector share (51.1%) the highest, followed by electricity (22.3%) and industry (19.2%) sectors.