The Role of Land Use in Determining Greenhouse Gases Mitigation Costs

Thomas Hertel (Purdue Univ.), Huey-Lin Lee (NIES), Steven Rose (U.S. EPA), and Brent Sohngen (Ohio State Univ.)

GTAP Working Paper No. 36 (Output from the research project sponsored by the US-EPA)

Motivation

- Land is a significant source of GHG emissions
 - Deforestation: 1/3 of total emissions since 1850
 - Land management: 75% of N₂O, 50% of CH₄
- Previous studies suggest land-based mitigation is cost-effective
 - e.g., Sohngen and Mendelsohn (2003), Rao and Riahi (in press), van Vuuren et al. (in press)
- Analytical challenges for land modeling
 - Competition for land between land-based sectors
 - Land-based mitigation competition and net emissions effects
 - Land heterogeneity and dynamics
 - Lack of key consistent global data—land, emissions, mitigation costs
- New global datasets—land, emissions, mitigation costs

Provide opportunities for improving our understanding of the role of land in determining GHG mitigation costs.

Objective:

To analyze the impact of GHG mitigation on land use change in general equilibrium framework

Outline of this presentation:

- Land, GHG emissions/sequestration data
- Land supply and demand and land-based emissions modeling in GTAP
- Analysis set-up
- Results
- Conclusions

GTAP AEZ Land Use Data

- Our work builds on path-breaking work by Darwin et al. at ERS/USDA, by adding:
 - More refined definition of AEZs
 - Climate dimension—tropical, temperate, boreal
 - Implementation at the 226-country level
 - Documented in Lee et al. (2005) and available on the GTAP website

Definition of AEZs in GTAP

- 18 AEZs = 6 LGPs x 3 climatic zones
 - 6 LGPs = 0–59, 60–119, 120–179,...., 300–365 days
 - 3 climatic zones = boreal, temperate, tropical
- Follows pioneering work by FAO and IIASA in definition of an AEZ as
 - land with given "length of growing period" (LGP), as determined by: temperature, precipitation, soil condition and topography, combined with information from a water balance model and knowledge of physical requirements for growing certain crop.
- Lands classified in same AEZ have homogeneous units within the country—i.e., with similar climate and soil conditions for crop growing.

Global Distribution of AEZs

Global Land Cover: distribution

Cropland Hectares by AEZ and crop

1000 hectares

Distribution of Crop Land Rents, within AEZs

9

Non-CO2 emissions & forest sequest'n data

- New 2001 non-CO2 emissions data
 - Corresponds to GTAP v6 data 2001 base year and complements GTAP 2001 CO2 emissions data
 - Highly disaggregated explicitly for more precise mapping to economic activity (output and input)
 - 226 countries
 - 21 non-CO2 GHG emissions categories (N2O, CH4, F-gases)

-~145 types of emissions with subcategory disaggregation

- Regional 2000 forest carbon stock data by AEZ, management type, and tree age cohort
- Soil carbon stock data and Other CO2 (non-fossil fuel combustion) emissions data also available (but yet implemented in the model)

Sectoral distribution of non-CO2 emissions, by region

The GTAP-AEZ model

- Static global CGE
- 3 Regions (for now): USA, China, ROW
- 24 Sectors 5 land-based sectors (3 crops, ruminant livestock, forestry)
- Key features:
 - Land in 6 AEZs: aggregated from the 18 AEZs
 - 3-tier CET structure of AEZ-specific land supply
- GHG emissions and sequestration modelling
 - Incorporate new detailed non-CO2 GHG emissions data (N2O, CH4, F-gases) and forest carbon sequestration data
 - 3 classifications of emissions output, intermediate inputs, primary factor related emissions
 - Introduce emissions pricing
 - Calibrate mitigation responses

Land supply in GTAP

- Standard, yet counterfactual
 - 1 type of ag. land, imperfect mobility across uses
- Now: Agro-ecologically zoned land
 - Heterogeneous in terms of rainfall, temperature, topography, soil type and moisture, etc.
 - length of growing period (LGP) varies
 - Suitability for growing of certain crops
 - Restricting land mobility across uses

3-tier CET structure for AEZ-specific land supply

Sector-specific CES structure for AEZ land demand

- Big enough ESUBAEZ ensures returns to AEZ lands to move closely together
- A good approximate of an alternative specification where:
 - one prod. function for each AEZ in each activity
 - AEZ-specific comm. are perfect substitutes
 - Similar production function for AEZ-specific activity
 - **Each AEZ-specific sector faces same input/factor prices.**

The GTAP-AEZ model

- Static global CGE
- 3 Regions (for now): USA, China, ROW
- 24 Sectors 5 land-based sectors (3 crops, ruminant livestock, forestry)
- Production with intra- and inter-regional land heterogeneity
 - Land in 6 AEZs: aggregated from the 18 AEZs
 - CET 6 different AEZ land endowments
- GHG emissions and sequestration modelling
 - Incorporate new detailed non-CO2 GHG emissions data (N2O, CH4, F-gases) and forest carbon sequestration data
 - 3 classifications of emissions output, intermediate inputs, primary factor related emissions
 - Introduce emissions pricing
 - Calibrate mitigation responses

Modeling emissions - 3 categories -

- <u>Output</u> emissions treated as an input to production, represents alternative technologies, introduce new CES elasticity
 - Follows Hyman et al. (2003)
 - e.g., coal, oil, energy intensive manufacturing
- Input emissions proportional to input use
 - <u>Endowment</u> e.g, ruminant : capital stock (animal herd)
 - <u>Intermediate input</u> e.g., grain crop : fertilizer use

Prod. structure: output related emissions incl.

Emissions pricing

- The economic impact of an emissions tax associated with input usage depends on <u>the size of the tax AND</u> <u>the emissions intensity (tC/\$) of the input</u>.
- The larger the emissions intensity, the greater the impact of a given carbon tax on the sector's input use and production.

Emission intensities (tC/\$ of input)						
Input	USA	China				
Fertilizer in crops production	0.0061	0.0043				
Ruminant livestock capital	0.0099	0.9562				
Land in paddy rice	0.0040	0.0125				

Calibrating mitigation responses

- Non-CO2 mitigation
 - Engineering mitigation cost estimates for detailed technologies (Delhotal and Kruger, in press; USEPA, 2006)
 - Calibrate substitution elasticities with partial equilibrium closure
 - Output emissions ESUBMAC
 - Endowment emissions ESUBT
 - Intermediate input emissions ESUBVA
- Forest sequestration supply
 - Calibrated to regional forest carbon supply curves Sohngen (2005) – afforestation (extensification) and forest management (intensification)
 - Calibrated to forest carbon intensities due to presence of unmanaged land in the base year data

Calibrated ROW forest carbon sequestration curve via extensification (20-year annual equivalent abatement)

Calibrated USA forest carbon sequestration curve via intensification (20-year annual equivalent abatement)

Analysis of mitigation responses

- 1. GE global competition: USA-only vs. global carbon tax
- 2. GE inter-sector competition: USA-only v.s. global carbon tax

Mitigation affects regional land competition

GE % change in land rents and land use by sector due to a \$50/tonne carbon tax: USA only

	Percentage change in land rents								
	Forest	PaddyRice	OtherGrain	Other Crops	Ruminants				
AEZ1	253.5	-15.9	2	3.3	5.1				
AEZ2	254.3	-15.3	1.9	3.2	5.1				
AEZ3	236.9	-15.5	1.9	3.2	5.1				
AEZ4	267.5	-15.5	2	3.2	5.1				
AEZ5	295.2	-16.5	2	3.3	5.2				
AEZ6	320.2	-20.2	2.3	3.6	5.4				

Percentage change in land use, weighted by AEZ land rent share

	Forest	PaddyRice	OtherGrain	Other Crops	Ruminants
AEZ1	0.286	-0.023	-0.211	-0.05	0
AEZ2	0.013	-0.017	-0.226	0.068	0.162
AEZ3	0.009	-0.029	-0.131	0.098	0.053
AEZ4	0.427	-0.026	-0.431	-0.003	0.034
AEZ5	2.134	-0.412	-1.215	-0.391	-0.084
AEZ6	5.604	-0.626	-1.366	-3.242	-0.153

- 1. For a given use, similar land rent responses across AEZs
- 2. Changes in land rents reflect the net effect of mitigation costs and land competition (i.e., changes in land prices and changes in acreage) mitigation cost/subsidy dominates in rice and forestry, land competition dominates in other ag sectors

Mitigation affects global competition - Regional

- 1. USA only carbon tax USA less competitive, international emissions leakage (primarily deforestation)
- 2. Vs. global carbon tax all regions with net reductions, global emissions reductions large, ROW mitigation least expensive (primarily forest carbon increases), USA mitigation most expensive.

Mitigation affects global competition — sectors

Global vs. US tax – US mitigation responses diminished in all sectors.

Conclusions

• Biophysical and economic land characteristics create comparative abatement advantages for land endowments

→ intra- and inter-regional reallocation of production, and thus land use change.

- International market structure influences regional mitigation responses
- International leakage is an important component of total GHG emissions

Access to LU/GHG data and WP

• Land use data:

- https://www.gtap.agecon.purdue.edu/resources/res_disp lay.asp?RecordID=1900

• Greenhouse gas emissions data:

- CO2:
 - https://www.gtap.agecon.purdue.edu/resources/res_display.asp ?RecordID=1143
- CH4, N2O, F-gases:
 - https://www.gtap.agecon.purdue.edu/resources/res_display.asp ?RecordID=1186
- GTAP Working Paper No. 36:
 - https://www.gtap.agecon.purdue.edu/resources/res_disp lay.asp?RecordID=2230

