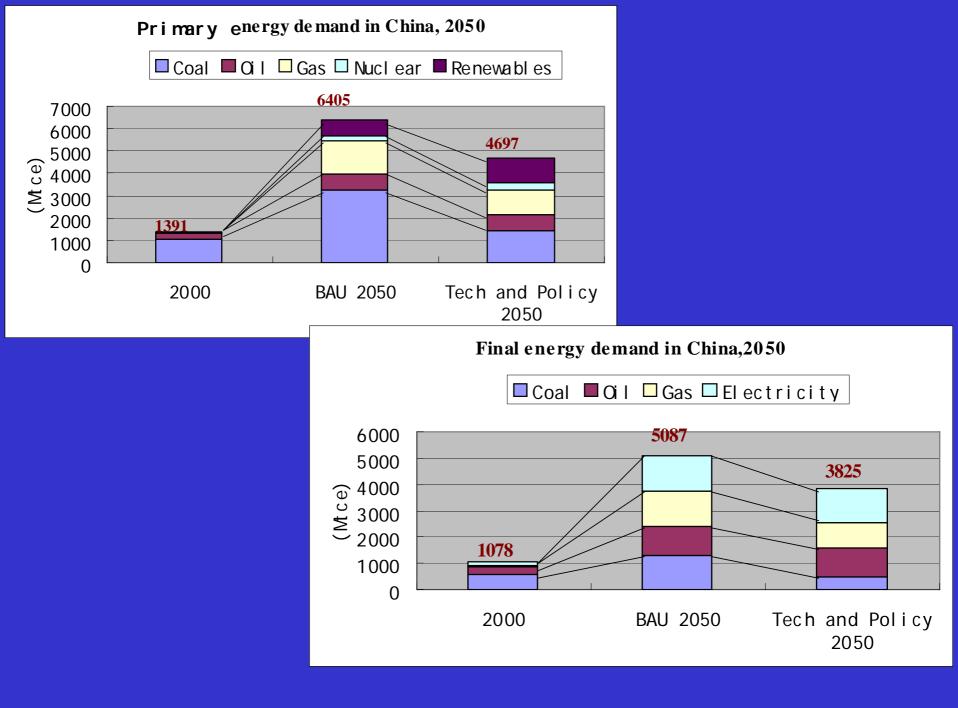
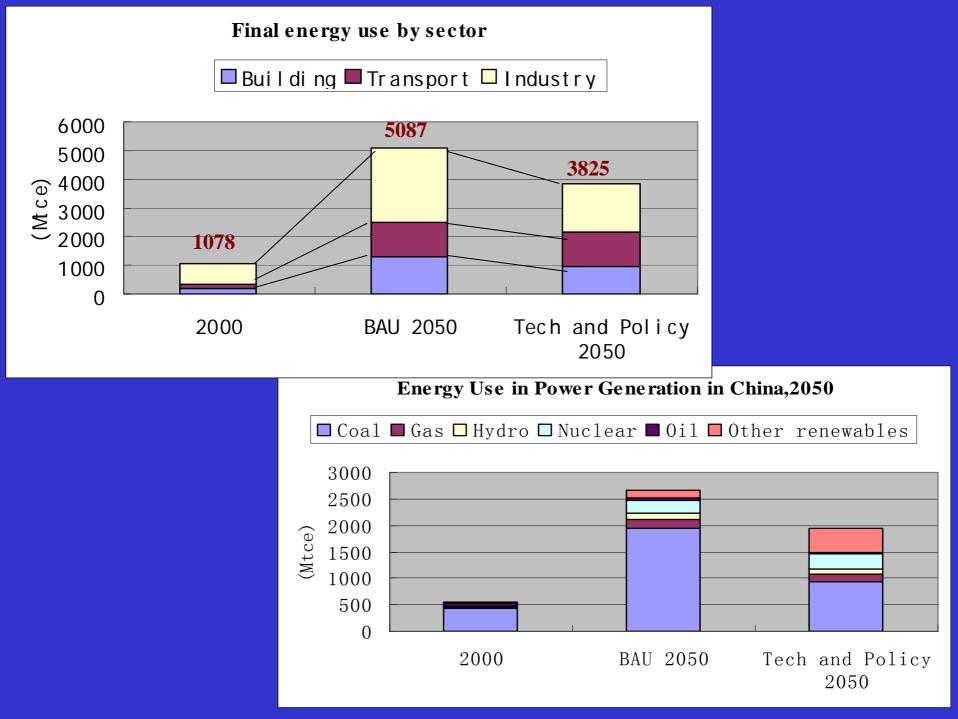
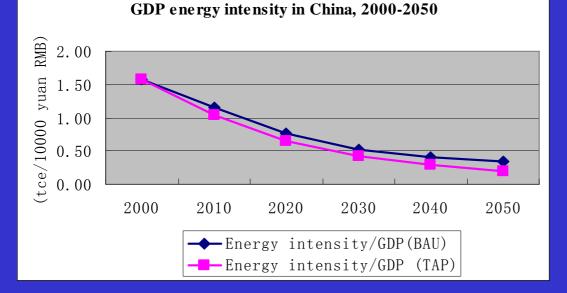
Low-Carbon Options in China

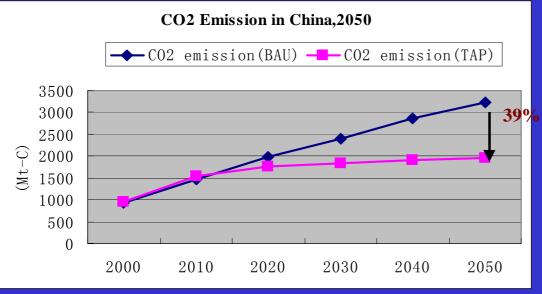
Jiang Kejun, Hu Xiulian Energy System Analysis and Market Analysis Division Energy Research Institute, China


12th AIM International Workshop, Feb.19-21, 2007


Objectives


- Find Sustainable development pathway on energy and environment in China
- Development a common future with other team members from Japan, India, and UK.
- Find a way to join international effort on GHG Emission reduction

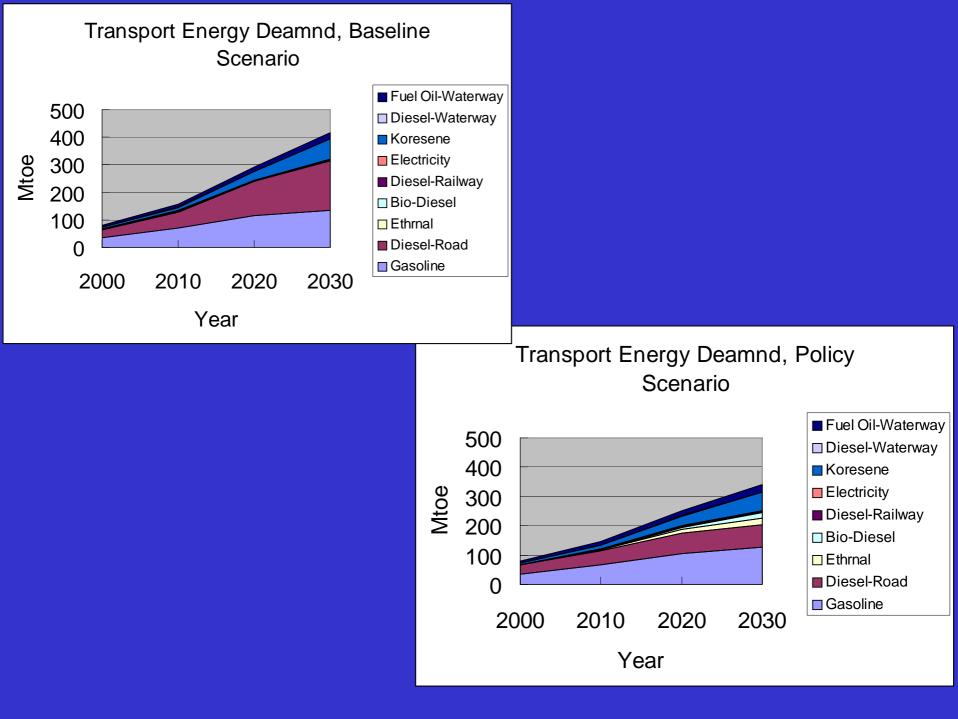
China: Energy demand and CO₂ emission scenarios


		Baseline scenario	Policy and technology scenario
Enhanced Energy Saving	Energy Intensive Products	Annual average energy saving rate 2.7%	Annual average energy saving rate 3.6%
	Building	Annual average energy saving rate 1.9%	Annual average energy saving rate 3.0%
	Transport	Annual average energy saving rate 1.5%	Annual average energy saving rate 2.8%
Renewable energy	Biomass	Annual average reduction rate of cost by 3.7%	Annual average reduction rate of cost by 5.9%
	Hydro	65% of technical potential by 2050	80% of technical potential by 2050
	Solar/wind	0.7yuan/kWh by 2050	0.5Yuan/kWh by 2050
Carbon Capture and Sequestration	Coal fired power plants	4% by 2050	15% by 2050
	Industry	1% by 2050	5% by 2050
Clean coal technology	Power generation	7% by 2050	35% by 2050
	Industry	5% by 2050	15% by 2050
Hydrogen	Power generation	Distributed power generation system by 3% in 2050	Distributed power generation system by 8% in 2050
	Transport	Fuel cell vehicle 5%	Fuel cell vehicle 15%
Transport	Vehicle	Hybrid vehicle diffusion start from 2010, 10% by 2030	Hybrid vehicle diffusion start from 2010, 70% by 2040
Policies	Energy tax	No	50yuan/tce in 2010, 200yuan/tce in 2050
	Subsidy	No	Power from renewable energy 0.3yuan/kWh
	Investment Energy technology R&D	Annual average growth rate 4%	Annual average growth rate 6.2%

Energy demand will be reduced 27% (1708Mtce) in 2050 by technology and policy scenario compared with baseline scenario in China.

CO2 emission will be reduced 39% (1263Mt-C)in 2050 by technology and policy scenario compared with baseline scenario in China

Identify efficiency promised technologies: fully used by 2020

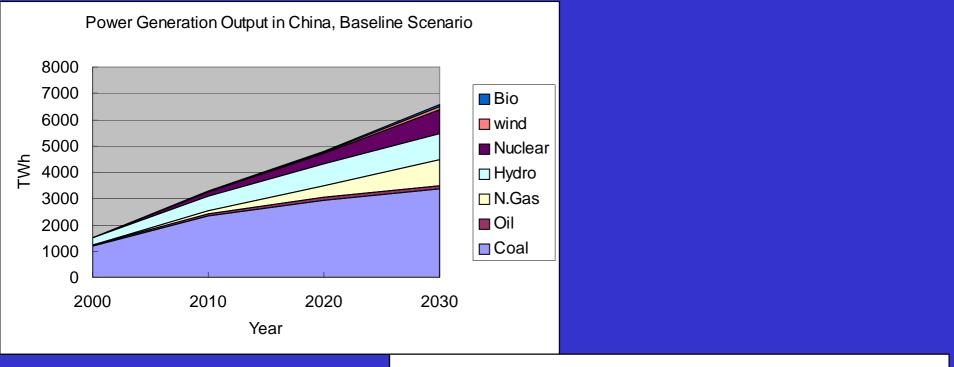

Sector	Technologies	
Steel Industry	Large size equipment (Coke Oven, Blast furnace, Basic oxygen	
	furnace ,etc.), Equipment of coke dry quenching, Continuous casting	
	machine, TRT	
	Continuous rolling machine, Equipment of coke oven gas, OH gas and	
	BOF gas recovery, DC-electric arc furnace	
Chemical Industry	Large size equipment for Chemical Production, Waste Heat Recover	
	System, Ion membrane technology, Existing Technology Improving	
Paper Making	Co-generation System, facilities of residue heat utilization, Black	
	liquor recovery system, Continuous distillation system	
Textile	Co-generation System, Shuttleless loom, High Speed Printing and	
	Dyeing	
Non-ferrous metal	Reverberator furnace, Waste Heat Recover System, QSL for lead and	
	zinc production	
Building Materials	dry process rotary kiln with pre-calciner, Electric power generator with	
	residue heat, Colburn process, Hoffman kiln, Tunnel kiln	
Machinery	High speed cutting, Electric-hydraulic hammer, Heat Preservation	
	Furnace	
Residential	Cooking by gas, Centralized Space Heating System, Energy Saving	
	Electric Appliance, High Efficient Lighting	
Service	Centralized Space Heating System, Centralized Cooling Heating	
	System, Co-generation System, Energy Saving Electric Appliance,	
	High Efficient Lighting	
Transport	Diesel truck, Low Energy Use Car, Electric Car, Natural Gas Car,	
	Electric Railway Locomotives	
Common Use	High Efficiency Boiler, FCB Technology, High Efficiency Electric	
Technology	Motor	
	Speed Adjustable Motor, Centrifugal Electric Fun, Energy Saving	
	Lighting	

Technologies use in IPAC-AIM/Technology model for transport analysis

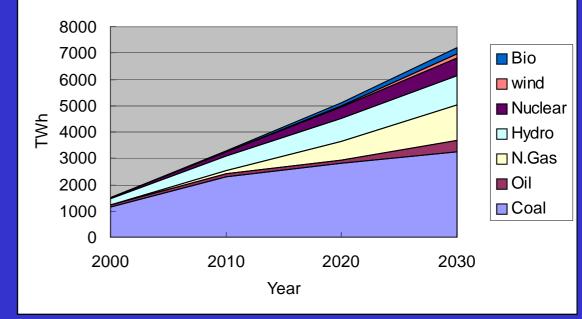
Mode	Technology	Mode	Technology
Air, Freight	Airplane, freight	Bus	Gasoline bus
Large Truck	Conventional large truck (Gasoline)		Improved gasoline bus
	New large truck (Gasoline)		Diesel bus
	Conventional large truck (Diesel)		Improved diesel bus
	New large truck (Diesel)		Hybrid Bus
	Hybrid Truck, large		CNG.Bus
Small Truck	Conventional small truck		LPG.Bus
	New small truck	MRT	MRT
	Small Truck Diesel	Car	Electric car
	Hybrid Truck, small		SANATA-Normal Car, Gaso
Railway, Freight	Conventional diesel locomotive		Mini-Car
	New diesel locomotive		High Fuel Economy Car
	Conventional electric locomotive		Hybrid Car
	New electric locomotive		Fuel Cell car
	Steam locomotive		Diesel Car
Waterway	Conventional coastal ship		New Diesel Car
	New coastal ship	Railway, Passenger	Conventional diesel locomo
	Conventional ocean ship		New diesel locomotive
	New ocean ship		Conventional electric locom
	Conventional river ship		New electric locomotive
	New river ship		Steam locomotive
	Transportation Others	Waterway, passenger	Conventional river ship
Air, Passenger	Airplane, Passenger		New river ship

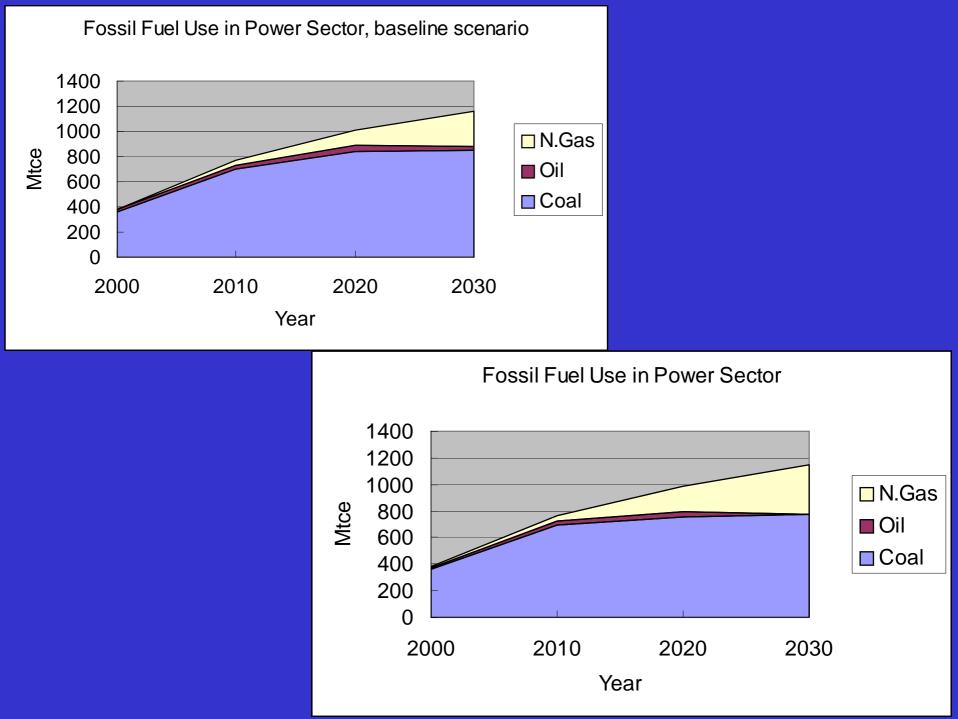
Policy Options for alternative transport scenario

Mode	Policy Options
Air	New Boing Airplane, AirBus 380
Railway	Efficiency improvement 8% for electric and diesel locomotive
Waterway	15% efficiency improvement by using larger tank and engine
Freight Large Truck	Advanced diesel truck, more then 50%
	Hybrid Truck, 20%
Freight Small Truck	Hybrid Truck, 50%
	New Diesel Truck, 40%
Bus	Hybrid Bus, 70%
Car	Efficient diesel car, 30%
	Hybrid car 50%
Biomass Fule	Ethonal 30% of gasoline use
	BioDiesel 15%
Public Transport	Take 15% more from car use
Bicycle	10% more
Fuel tax	Start from 2010, similar rate by 2020 with that in Japan and Europe



Technology Used in Power Generation


Biogas Power Generation			
Biogas power generation from husbandury			
Biomass Power Generation			
Offshore wind turbine			
Nuclear Power Plant			
Biomass Power Plant			
Super Critical Unit			
Critical Unit			
Coal Cogeneration			
N.Gas Co-generation			
Coal Power Plant			
Gas Power Plant			
IGCC			
NGCC			
Oil Power Plant			
Hydro Power Plant			
Wind Power			


Technology options for alternative scenario

Biogas Power Generation	10GW by 2020	
Biodas power deneration from hu	1GW by 2020	
	2GW by 2020	
	10GW by 2030	
Nuclear Power Plant	40GW by 2020	
	100GW by 2030	
	100GW by 2030	
	25GW by 2020	

Power Generation Output in China, Policy Scenario

Clean Coal Technology: Global Progress

- ✓ In 2000, Version 21 program in United States
- Early Entrance Co-production Plant(EECP), 2007
- Pilot phase plants on LPMEOH and LPDME, which are the technologies to produce methanol, Dimethyl Ether, and co-generation. These plants were constructed in 1997
- Coal integrated generation system by Some famous international companies including BP, GE, Air Products and Chemicals, Shell
- Investment for clean coal technology R&D is decreasing in Europe due to less use of coal, even in United States

Clean Coal Technology: Progress in China

- Coal washing: in 2003, coal washing rate is only 24%, remain very low washing rate
- Coal-Water mixture: There are huge development of coalwater mixture in China. In 1999 the production capacity was less than 900 thousand ton. The production capacity increased to be nearly 7 million ton in 2003
- Industry briquette: because of high price, progress of industry briquette is slow. Recently air pollution issues raised the possibility to use more industry briquette
- Ultra-super critical unit: 1GW unit is under construction in Yuantian Power Plant, which started construction in 2004 and will be in operation in 2007. This is one component of National 863 Project

Clean Coal Technology: Progress in China(conti.)

- IGCC: Project feasibility study was done for Beijing IGCC project and Yantai IGCC project during 1995 to 2000. And now Yantai IGCC project is under construction. Yanzhou Coal Mine Group also made plan for IGCC, together with methanol generation system.
- Underground coal gasification: Shan Dong Lineng Group made plan for a pilot phase project on underground coal gasification. This project includes four gasification furnace with total capacity 3million m3 per day
- Poly-Generation: in 973 Program, a preliminary analysis was conducted, and several companies, research institutes, universities are planning to construct gasification power generation, fuel and feedstock poly-generation system

Clean Coal Technology: Progress in China(conti.)

- Direct Coal Liquefaction: In 2002, Shenhua Direct Coal Liquefaction project was approved by State Council and started construction. This project is expected to start production in 2007. Fundamental research for direct coal liquefaction is taken by research institutes such as China Coal Research Academy
- Desulphurization: with recent rapid increase of coal fired power plants, newly construct coal fired power plant with sulphur content higher than 1% equipped with desulphurization technology. And due to air pollution in cities, some existing coal fired power plants near cities also started to equip with desulphurization equipments
- Low Nox Combustion technology: still in research process. One pilot project is under construction. As research project, more then ten units equipped with low NOx combustor

Profit to develop clean coal technologies

- Increase energy security: self-supply of energy 93% in 2005. In 2030, self supply will be 76% in 2030 in baseline scenario, 77% in policy scenario, with smaller import.
- Fundamental industry in China with large employment: 7.6 million employees in 2004, 7.8million in 2030. Important thing is this is good for low income people to fine opportunity
- Extend economy activities. Taking lead for clean coal technology in the world will bring economy benefit.
 Three power equipment companies in China is becoming among top manufactures in the world in 2005(largest power capacity suppliers for coal fired power plants), and started to export advanced coal fired power plants.

Profit to develop clean coal technologies(Conti.)

- Very good environment effects. SO2, NOx, PM emission, water pollution will be significantly reduced by using clean coal technologies, also very important for GHG emission reduction. Clean coal technology development will be crucial for government environment target in 11th Five Year Plan
- Contribution to global climate change collaboration. Asia-Pacific Partnership on Clean Development and Climate, China-EU Partnership on Climate Change have component of clean coal technology collaboration

We can do more, with new technologies

Conclusion

- There are already a large amount of new technologies available to be implemented in China. Policies such as fiscal polices including energy tax should be adopted at early time
- New advanced technologies is crucial for future low carbon society, such as advanced power generation system, transport system, higher efficiency electric appliance, building
- More investment is urgently needed now for technology R&D. International collaboration is expected to work on this
- Investment on new technology will benefit on economy development
- Chinese government is making full effort to reduce energy demand increase in China as national strategy. If the strategy could be implemented, there will be strong support for low carbon society in 2050

- Energy tax, to be implemented at early time, such as 2010
- Reduce space heating payment for energy efficient building
- Pay-back price: grid purchase electricity from renewable in the price grid sale to end-users
- Much more emphasizing on new technology development

Next Step

- Further discussion with other team members, by sharing options in model, and policy options
- Energy intensive products demand model/Material flow model development
- International regime discussion