Low Carbon Societies in China: Scenario and Road Map

ERI Team

Energy Research Institute, China

Primary Energy Demand, Basline Scenario

Primary Energy Demand in China, policy scenario

GDP per Capita, US\$, PPP

IPCC Range

Figure SPM.7: Emissions pathways of mitigation scenarios for alternative categories of stabilization levels (Category I to VI as defined in the box in each panel). The pathways are for CO₂ emissions only. Light brown shaded areas give the CO₂ emissions for the post-TAR emissions scenarios. Green shaded and hatched areas depict the range of more than 80 TAR stabilization scenarios. Base year emissions may differ between models due to differences in sector and industry coverage. To reach the lower stabilization levels some scenarios deploy removal of CO₂ from the atmosphere (negative emissions) using technologies such as biomass energy production utilizing carbon capture and storage. [Figure 3.17]

IPCC Range

Table SPM.5: Characteristics of post-TAR stabilization scenarios [Table TS 2, 3.10]^a

Category	Radiative forcing (W/m²)	CO ₂ concentration ^{c)} (ppm)	CO ₂ -eq concentration ^{c)} (ppm)	Global mean temperature increase above pre- industrial at equilibrium, using "best estimate" climate sensitivity ^{b), c)} (°C)	Peaking year for CO ₂ emissions ^{d)}	Change in global CO ₂ emissions in 2050 (% of 2000 emissions) ^{d)}	No. of assessed scenarios
I	2.5-3.0	350-400	445-490	2.0-2.4	2000-2015	-85 to -50	6
Ш	3.0-3.5	400-440	490-535	2.4-2.8	2000-2020	-60 to -30	18
III	3.5-4.0	440-485	535-590	2.8-3.2	2010-2030	-30 to +5	21
IV	4.0-5.0	485-570	590-710	3.2-4.0	2020-2060	+10 to +60	118
V	5.0-6.0	570-660	710-855	4.0-4.9	2050-2080	+25 to +85	9
VI	6.0-7.5	660-790	855-1130	4.9-6.1	2060-2090	+90 to +140	5
						Total	177

a) The understanding of the climate system response to radiative forcing as well as feedbacks is assessed in detail in the AR4 WGI Report. Feedbacks between the carbon cycle and climate change affect the required mitigation for a particular stabilization level of atmospheric carbon dioxide concentration. These feedbacks are expected to increase the fraction of anthropogenic emissions that remains in the atmosphere as the climate system warms. Therefore, the emission reductions to meet a particular stabilization level reported in the mitigation studies assessed here might be underestimated.

b) The best estimate of climate sensitivity is 3°C [WG 1 SPM].

c) Note that global mean temperature at equilibrium is different from expected global mean temperature at the time of stabilization of GHG concentrations due to the inertia of the climate system. For the majority of scenarios assessed, stabilisation of GHG concentrations occurs between 2100 and 2150.

d) Ranges correspond to the 15th to 85th percentile of the post-TAR scenario distribution. CO₂ emissions are shown so multi-gas scenarios can be compared with CO₂only scenarios.

Ownership of Vehicle

vehicle/1000people

Source: RIIA, 1997 Chatham House Forum

Planning scheme of Rail-based transit system in Beijing's urban area

Bio-Fuel in Transport

key technologies in long term

- a. Modern renewable energy production technology (solar power and etc)
- b. Advanced nuclear power generation system
- c. Fuel cell
- d. IGCC/advanced clean coal technology/carbon capture and carbon storage technologies
- e. Advanced gas turbine
- f. Unconventional natural gas and crude oil production technology
- g. Synthetic fuel production technology
- h. Ultra-low-power and zero-emission advanced transport technologies

Roadmap of Industry

- By 2030, best efficiency in the world
- From now, newly installed capacity should go to best or second best technology
- After 2030, innovation on new technology and new production process
- Establishing recycling economy

Fixed Unit Ivestment

Population in 2005

Population in 2030

22

Population in 2050

We can do more, with new technologies

Common Policy Settings in Scenario Analysis

Policy measures	Possible policy tools	Applica-	Effects in laboratory experiments		
1	T. (0.1.1.1	bility	TTL L'ANN LA ST		
1. Encourage of energy	Tax/Subsidy	++	The distance between end-use		
efficiency investment	Low/Zero interest loans	++	energy intensity in west Europe and		
	Information	++	China will be lessened by 30% in		
	Appliances brand/criteria	+++	2050.		
	Investment in public transportation	++			
	Industrial voluntary agreement	++			
2. Energy tax and the	"Green tax" - petrol/coal	+++	Implement the energy tax (for all		
effects	oil tax		fuels) with the same standards as the petrol and natural gas tax implemented in industry and transport in west Europe		
3. Impacts to the end-use	Tax/subsidy, such as the	+	Decrease of coal consumption in		
energy market	emission standards towards		construction sector		
	natural gas and bio-fuels	+++			
4. High efficient and	Technology and emission	++	Till 2050, 15-20% of electricity will		
gas-based combined	standards		use the combined cycle gas.		
cycle (CC) in electricity	System reformation				
generation	R&D projects				
5. Advanced Clean Coal (ACC) Option including IGCC	Investment	++	All coal-fired power plants realize the high efficiency production since 2010.		
6. Decrease in		++	Losses during electricity		
transmission loss			distribution and transmission will		
			decrease to the level of OECD countries (8%).		
7. Increase in the share	Technology and emission	+	The share of nuclear power in		
of nuclear power	standards		electricity production will increase		
×	Ouota system/Renewable		from 7% (B2-C) to 20%.		
8. Increase in the share	energy obligations	++	Renewable energy power		
of renewable energy	System reformation		generation will increase from 7% to		
such as solar power and	R&D projects		20% by 2020		
wind power	Investment				

26

A Snapshot of Selected China Energy Options Today: Climate and Energy Security Impacts and Tradeoffs in 2025

This chart compares the energy security and climate characteristics of different energy options. Bubble size corresponds to incremental energy provided or avoided in 2025. The reference point is the "business as usual" mix in 2025. The horizontal axis includes sustainability as well as traditional aspects of sufficiency, reliability, and affordability. The vertical axis illustrates lifecycle greenhouse gas intensity. Bubble placements are based on quantitative analysis and ERI expert judgment.

Transport Sector (this size corresponds to 200 thousand barrels of oil per day)

rozen MPG fo

Vehicle Fleet (at 2005)

For specific details on the assumptions underlying the options on this chart, go to <u>www.wri.org/usenergyoptions</u>

Revised 6/14/2007

capture

Negative Climate Characteristics