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Background (1)

“Ancillary Benefits of Climate Change
Policies to the Air Quality” (or Co-benefits
between both policy) is considered to be
very important to promote the installation of
countermeasures of climate change,
especially for developing countries.
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Background (2)

To evaluate the “Ancillary Benefits of Climate
Change Policies to the Air Quality”, it Is necessary
to integrate the air pollution control policy into
climate change policy.

IPCC 4th assessment report suggest more
research for ancillary benefits (or Co-benefits)
between GHG and air pollution policies.

(There are still many uncertainties; Change in
emission of gaseous and particulate species in
the future, human and ecological impact of air
pollutants, future cost for air pollution control, etc.)



Outline of the study

How to integrate the ancillary benefits into the
current model framework.
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Emission Inventory and Downscaling

Downscaling by various spatial distribution data.
(such as population, road network, LPS, sub-regional
statistics, etc.)

Emission
Inventory / Estimate

Fossil Fuel Emission Factor
consumption Technology

Downscaling

* Regional / Local Scale

Bottom-up inventory (AIM/Enduse)
Collecting Emission Factor (EF) data.



GIS Platform for Downscaling
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Air pollution modeling

There are still very large uncertainties ...
* Activities

* Emission Factor

» Chemical Reaction

« Vertical mixing (convection / diffusion )

* Dry / Wet deposition - « Regional / Local Scale
Not only for future projection, « No time-lag between
but also for current situation emission and impact

>

Pollutants

sion Factor
nology

Air Pollution
Modeling

So, first, we need to improve the framework of
the Air Pollution Modeling.
*\VVerify and Improve the model performance.

*Develop the feedback loop to improve
emission inventories.

sImprove the robustness for future prediction.
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‘ Target Area

= Domain |
East and South Asia

d Grid size

80km

d Number of Grids
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‘ Used observation data

 [RACE-P :Transport and Chemical Evolution over the Pacific
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Emission inventory

Used inventories

o Anthropogenic---Streets et al.(2003), EDGARS3.2
Fast Track (Olivier et al.2005)

o Daily Biomass Burning -++ABBI (Asian Biomass
Burning Inventory) (Michel et al., 2005)

We classified emission source to four group.

o Anthropogenic (China/ Other countries)
o Biomass Burning

o Background (i.e. Boundary condition)

13



Observation
Data
Emission I S-R
Inventory change A i
: Matrix
(Regional) I
&

Calculated
Concentration

Downscaling II

Time variation =
(Annual, Daily)

Boundary
Condition

Emission
Mesh data

Qutline of
the
framework

ECMWF
Meteo. Data

Chemical
Transport
Model

Landuse

Terrain

(Yanagi, 2008)



Meso-scale Meteorological Model
and Chemical Transport Model

MM5 : 5th Generation Mesoscale Model

o Developed by Pennsylvania State Univ.(PSU) and
National Center for Atmospheric Research(NCAR,
USA)

CMAQ : Community Multiscale Air Quality Model

o Developed by US/EPA
o 3D Eulerian type Chemical Transport Model
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‘ Calibration Method

Following 4 Steps

1. Minimize the model error.
2. Source — Receptor Analysis

3. Minimize the error between model and
observation.

4. Correction of Emission Inventory
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Minimization of Model errors
Selection of Chemical Mechanism
Improve the spatial resolution
Improve the time-step of Input / Output

Source — Receptor Analysis

We assumes the linear relationship between
emission amount and concentration, because the
reaction rate of CO is small.

Contributions of each source category were
calculated by source —receptor analysis.
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Minimization of the Errors.

(1) Improved Model concentration.
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Example of the calculation
(March 2001, one month; CO)




Result of Contrlbptmn lﬁnalysm
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‘ Obtained correction coefficient

B AnthrOpOgeniC(constantduring all flight)
a China==-2.7
o Other countries==+2.5

s Background =Biomass Burning (varied for each flight)
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Calibration Results
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Change of errors Histogram of "Calculation —Observation”

m Histogram from all flight data.
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Air pollution modeling

There are still very large uncertainties ...

» Activities

* Emission Factor

» Chemical Reaction

« Vertical mixing (convection / diffusion )

* Dry / Wet deposition « Regional / Local Scale
Not only for future projection, « No time-lag between

but also for current situation emission and impact

! ! Air Pollution
Pollutants Modeling

. . sion Factor
So, first, we need to improve the framework of n'ology
he Air Pollution Modelino

nd Improve the mode
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Challenges for future

Improve the model performance

Develop the calibration method for NOx, SO,
VOC ( more reactive species)

Develop a calibration method to sectoral
activities.

Long-term prediction of Regional / Local Air
Quality under several scenarios.

Estimation of Ancillary Benefits of Climate
Change Policy to Air Quality.
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