

Future AIM modeling

~Focused on global and regional assessment tools~

Yuzuru Matsuoka The 13th AIM International Workshop 17, February 2008

At Conference Room in Climate Change Research Hall (Not Ohyama Memorial Hall) National Institute for Environmental Studies, 305-8506,Tsukuba, Japan

Focused points

More realistic and comprehensive modeling

1. Impact[Policy]

Climate feedback and economic uncertainties :Implication on 50% reduction of world GHG emission

2.Enduse[global]

Inclusion of urbanization effects, household energy transition, and spatial emission distribution Relative health impacts of environmental factors

 Developing more consistent database for global economy and environmental modeling
 More comprehensive modeling for LCS study Linkage of ESS, BCM, and Element models

Extension of ESS for long-term regional environment study

AIM/Impact[Policy]

- Global and Long-term climate-economic-energy integrated model multi-regions (< 10), year 2000 to year 2200
- Dynamic global model consisted with;
 Dynamic economic CGE module maximizing social utility
 + Simplified climate module (global surface energy balance model)
 - + Carbon cycle module with feedback mechanism
 - + Simplified chemical reaction module
 - + Climate impact module
- Gases : CO_2 , CH_4 , N_2O , BC, SO_2 , and F gases
- Now refining: 1)to multi-regional, 2) inclusion of climate feedback mechanism, 3) systematic and organized methodology of impact assessment.

Including climate feedbacks

Effects of 50% GHG emission reduction in year 2050 on long-term temperature change

⁽¹⁾ Temperature increase in year 2200 above pre-industrial period

⁽²⁾ Using same socio-economic assumptions as SRES B2. Compliance with Kyoto target in year 2010 is assumed, and reduction will start after year 2010. Controlled gases are those denoted in Kyoto Protocol.

Temperature

5.7

2.8

2. 0

1.9

4.2

change ⁽¹⁾

Impacts of carbon cycle feedbacks on CO_2 emission paths

Target temperature = 2°C, Climate sensitivity =3°C, Discount rate = 1%/yLand carbon storage sensitivity = 0.6 GtC·GtC⁻¹(=1.3 GtC/ppm) in (2), (3) and (4) Carbon storage sensitivity to climate = -96 GtC/°C in (2), -199 GtC/°C in (4)

Future direction of AIM, 2008

Probability of temperature target compliance and emission reduction rate in year 2050

Temperature	Proba	bility	of c	ompli	ance
target	10%	33%	50%	66%	90%
2 በ°C	0	40	6 0	78	86
2.00	-4	43	64	87	97
<u>ז נ∘</u> ך	-56	10	32	53	85
2.00	-64	8	34	56	95
ງ ເ°⊂	-85	-54	-13	16	55
J. U C	-79	-63	-21	15	59

Upper row is of six gases in Kyoto Protocol, lower row is of CO₂. Temperature targets are increases above pre-industrial period and reduction rates are based on 1990 emissions.

Countries' reduction rates for world 50% emission reduction in year 2050

Country /Dogion	Equal per capita		Equal emission intensity	Equal velocity of intensity reduction	
Country/Region	emission	reduction ratio	reduction ratio	reduction ratio	
	Mil.tC/y	based on 1990	based on 1990	based on 1990	
United States	207	89%	49%(2%~63%)	85%(75%~88%)	
Canada	22	87%	61%(33%~65%)	87%(77%~89%)	
Japan	53	85%	35%(-23% ~ 44%)	91%(87%~93%)	
Australia	14	89%	66%(44%~73%)	80%(65%~83%)	
New Zealand	3	89%	70%(51%~75%)	83%(70%~87%)	
Western Europe	343	74%	50%(37% ~ 62%)	88%(87%~92%)	
Eastern Europe	49	87%	83%(75%~92%)	72%(64%~82%)	
Russia	55	94%	91%(75%~94%)	69%(60%~77%)	
Other CIS	72	89%	90%(87%~93%)	59%(49%~67%)	
South Korea	22	75%	36%(-104%~75%)	68%(62%~78%)	
China	728	34%	29%(-69%~46%)	-1%(-46%~12%)	
India	852	-97%	48%(-168%~66%)	-36%(-57%~2%)	
Other Asia	644	-45%	8%(-27%~49%)	-8%(-15%~22%)	
Mexico	68	52%	19%(-13%~59%)	57%(44%~60%)	
Brazil	130	37%	5% (-23% ~ 80%)	40%(33%~49%)	
Other Latin America	197	29%	12%(-12%~71%)	40%(38%~44%)	
Middle East	232	35%	34%(20%~84%)	26%(22%~48%)	
Africa	1028	-68%	51%(17%~92%)	-18%(-49%~37%)	
World	4719	50%	50%(50%~50%)	50%(50%~50%)	
Annex B	705	<mark>87%</mark>	63%(37%~67%)	82%(78%~84%)	
Non-annex B	4014	-2%	35%(29%~66%)	12%(9%~16%)	

Projections of GDP in 2050. We used 6 SRES scenarios of AIM (IPCC, 2001), A2r scenario (Grubler et al., 2006), Wilson and Purushothaman (2003), and Poncet (2006).

Relation of reduction rates between different sharing schemes

AIM/Enduse[Global]

- Regional bottom-up type model
 23 regions (same as AIM/Global[CGE]), year 2000 to year 2050
- Regional energy enduse module coupled with Regional energy resource module International energy, basic materials balance module Regional macro-economy and energy service demand module
- Emission sectors (activities)
 Industrial, residential and commercial, transport, agriculture,
 non-agricultural non CO₂ emission sectors, F gases
- Systematic reconciliation of base year information among stocks of energy devices, energy efficiency, energy services, and energy consumption
- Gases: CO_2 , CH_4 , N_2O , BC, OC, SO_2 , and F gases
- Compatibility with national AIM enduse modeling activity using same methodology and classification of energy/device/service

AIM/Enduse[Global]

Regional reality of Modeling: Population distribution and its relationship with CO₂ emission activity (from county level information of year 2000 China population census)

Regional reality of modeling : Large point sources of CO_2 SO₂ and NO_x emission in 2000

More consistent database for global economy and environmental modeling

More comprehensive modeling for LCS study: Two stages and three model groups of LCS's study:

Stage 1: Design of a Low Carbon Society

- 1. Creation of narrative storylines of future Low Carbon Societies
- 2. Description of sector-wise details of the future LCSs.
- 3. Quantification of the Macro economic and social aspects of the LCSs.
- 4. Identification of effective policy measures and packaging them

<u>Stage two : Putting them together and making</u> it happen

- 1. Design of policy roadmaps toward the Low Carbon Society
- 2. Feasibility analysis of the roadmaps considering uncertainties involved in each policy option
- 3. Analysis of robustness of the roadmap caused by societal, economical and institutional acceptability and uncertainties

Group 1: Element models;

- 1) Snapshot models;
 - Quasi steady Computable General Equilibrium (CGE) model
 - Energy technology bottom-up models - Energy supply model
 - Household production/lifestyle model
 - Transportation demand model
- 2) Transition models;
- Population and household model
- Building dynamics model
- Econometric type macro-economy model

Group 2: Extended Snapshot Tool (ESS)

Group 3: Backcasting Model for transient control (BCM)

Extended SnapShot (ESS)

REMAINING AND REQUIRED IMPROVEMENT

·Linking with BCM

Friendly interface and good operationality

• Systematic extension to other environmental loads

Future direction of AIM, 2008

Linkage among ESS, BCM, and Element models

We have completed most of element models, ESS and the 1st version of BCM. Now preparing the operational version of BCM and also material stock model.

After completing them, we will assemble them to one Integrated Model for Sustainable Society. Future direction of AIM, 2008 22 More comprehensive model for regional LCS study:

Key modeling parameters in regional ESS from a view point of regional development

AIM model family, FY2008

Categor	ry	Name	Category	Objective	Model type	Target year	FY 2006-2007 activity	
Top-down models		Ecosystem	Conservation of ecosystem/ water stress/ landuse/ pollutior in developing countries	Modeling of relationship among economic activities, land use and ecosystem	Multi-regional CGE + various environmental process models	~2100	Merge and extend to one global/CGE model as a plat	→Dr.Masui
	models	Global/CGE	Energy, GHG Control	Projection of long-term GHGs emission	Multi-regional CGE model	~2100-2150	home of AR5 scenario activity	
		Material	CO2 reduction, energy consumption, waste management environmental industry	Economic and material flow impact by climate and other environmental policy	One regional national CGE model	~2030-2050	Connecting with stock models,) houshold models, transport models and so on.	
		Econometric	Forecasting macro-economic frame	Quantification and analysis of macroeconomic and energy variables	Country-level econometric model	~2050	 Extend to a multi-regional world model	
		Backcasting	GHG, Energy, Low carbon society	Establishing scenarios toward saustainable society from view points of environment and economy	Country-level dynamic optimization model	~2050	Implementation and Operation	→Dr.Ashina
		Population/Household	Population, household	Establishing scenarios toward saustainable society from view points of environment and economy	Cohort-component model, houshold transition matrix model	~2050		→Ms.Kawase
		Building	Residential, non-residential building	Estimation of building demands related to houshold change, economic change and so on	Stock dynamics model	~2050	-	
Models /Tools for scenario making	ols for king	Transport	Passenger and Freight transport	t Estimation of transport demand related to national/regional/urban land planning	Trip generation, modal share modeling	~2050	Quantitative shinario making tools for mid-term	
		Stocks	Infrastracture, capital, buildings	Estimation of raw material needs, waste generation related to recycling and economic activity	Stock dynamics model	~2050	- }	
		Extended Snapshot	Integrating tool of element models	Comprehension of economic activity and environmental loadings with Social Accounting Matrix and energy balancing approach	Accounting tool	~2050		→Mr.Hibino
Ind-use, E chnolog		Energy supply and demand regulation	Temporal and spatial regulation of electlicity, heat and hydrogen	Adjustment among temporal and spatial fluctuation of energy demand and supply	Simulation and optimization type model	~2050		Mr.Gomi
		Enduse[global]	GHG,SO _{2,} NO _X ,PM abatement technology	Technology selection for global warming, regional air pollution	Country-level or regional-level bottom-up model	~2050	Still developing. Estimation of feasibility and economic burdens of low carbon world	→Dr.Hanaoka
		Enduse[country]	GHG,SO2,NO _X ,PM abatement technology	- Technology selection for global warming, regional air pollution	Country-level or regional-level bottom-up model	~2050	Keep maintainance Mi	Dr.Kanamori
		Enduse[local]	GHG,SO2,NOx,PM abatement technology	Technology selection for global warming, regional air pollution	Country-level or regional-level bottom-up model	~2030		Mr.AKushi
ppact Asserver		Impact	Impact assessment of climate change	Impact assessment at global scale	Process model based on raster GIS data	~2100	Keeping maintainance and	
		Impact[Country]	Impact assessment of climate change	Impact assessment at country scale	Process model based on raster GIS data	~2100	 reinforcement ? Anyway, it is necessary to reconfirm the developing policy, to review and to reorganize it. 	
		Impact[policy]	Integration of mitigation policy evaluation and impact assessment	Investigation of stabilization level and mitigation policy with considering consequent impacts	Calculating global GHGs paths	~2200	Change to multi-regional emission model, improve climate and carbon cycle modules)→Dr.Hijioka
		Water	Impact assessment	Integrated assessment of water supply and demand focusing on urban area	Coupling process model with and statistics	~2050	Coupling with AIM/GBDB(Global basin database)	
	Enduse[Air]	Environmental Assesment	Regional and country scale atmospheric environmenta analysis	Atmospheric quality model + GIS	~2050	Coupling with AIM/Enduse[local], for assessing long-range and urban air pollution issues.		