Toward AR5: Activity of global water resources model H08

Naota Hanasaki NIES

Outline

- Global water resources model: H08
- Activities toward IPCC/AR5
 - 1. Global water scarcity assessment
 - 2. Impact/adaptation study of Thailand
 - **3.** Global integrated assessment
 - 4. Multi model simulation of CC impact on global hydrological cycle
- Other activity
 - Global virtual water assessment

Application 1: Global water scarcity assessment

•Hanasaki, N., S. Kanae, T. Oki, K. Masuda, K. Motoya, N. Shirakawa, Y. Shen, and K. Tanaka (2008), An integrated model for the assessment of global water resources - Part 1: Model description and input meteorological forcing, *Hydrol. Earth Syst. Sci.*, *12*, 1007-1025.

•Hanasaki, N., S. Kanae, T. Oki, K. Masuda, K. Motoya, N. Shirakawa, Y. Shen, and K. Tanaka (2008), An integrated model for the assessment of global water resources - Part 2: Applications and assessments, *Hydrol. Earth Syst. Sci., 12, 1027-1037.*

Water scarcity assessment

• Several indices have been proposed to quantify regional water scarcity.

Water scarcity index = <u>Mean annual water withdrawal (water use)</u> Mean annual runoff (water availability)

Projection of water scarcity in future

Use of statistical (regression) models

- -Population scenario
- -Economic scenario

Mean annual water withdrawal Mean annual runoff

Milly et al., 2005, Nature

Population under high water stress (billion)

Oki and Kanae, 2006, Science

Impact of climate change on water cycle

- IPCC AR4/WG2/Ch3
 - Change in annual precipitation/runoff
 - Change in precipitation intensity(強度)/frequency(頻度)
 - Decrease of snowfall, shift of snowmelt season

Hanasaki et al., 2006, J. of Hydrol. Hanasaki et al. ,2008a,b, Hydrol. Earth Sys. Sci.

Global water resources model H08

Requirements

- Simulate both water availability (streamflow) and water use at daily-basis
- 2. Deal with interaction between natural
- hydrological cycle and anthropogenic activities3. Applicable for future climate change simulation

No feedback to atmosphere

Input and Output

Meteorological (1°×1°, 3hourly, 1986-1995)			Output (1°×1°,	daily, 1986-1995)
Air temperature	Revised GSWP2		Land	Evapotranspiration
Specific humidity	(Hanasaki et al., 2008a)		sub-model	Runoff
Air pressure				Soil moisture
Wind speed				Snow water equivalent
Shortwave radiation				Energy term
Longwave radiation			River	Streamflow
Precipitation			sub-model	River channel storage
			Crop growth	Planting date
Geographical/other (1°×1°, circa 1990)		H08	sub-model	Harvesting date
Cropland area	Ramankutty et al. 1998			Agricultural water dem.
Irrigated area	Döll and Siebert, 2000			Crop yield (not used)
Crop intensity	Döll and Siebert, 2002		Reservoir sub-model	Reservoir storage
Crop type	Leff et al., 2004			Reservoir outflow
River map	Oki and Sud, 1998			Agri. water withdrawal
Reservoir map	Hanasaki et al. 2006			Ind. water withdrawal
Industrial water dem.	FAO, 2007			Dom. water withdrawal
Domestic water dem.	FAO, 2007		Environmental flow	Env. flow requirement

Water resources assessment

Daily basis

Index= $\frac{\sum daily withdrawal (simulated)}{\sum daily demand (simulated)}$

High stress	Index<0.5
Medium stress	0.5≤index<0.8
Low stress	0.8≤Index

CWD

High Stress

For future projection

Meteorological (1°×1°, daily?,2001-2100)			
Air temperature	GCM results available.		
Specific humidity	Snatial/Temporal down		
Air pressure	scaling is needed		
Wind speed	Pias correction is		
Shortwave radiation	needed.		
Longwave radiation			
Precipitation			

→An European group developed a
new dataset
\rightarrow Some Japanese groups are also working hard.

Geographical/other (1°×1°, 2001-2100)		
Cropland area	RCP?	
Irrigated area		
Crop intensity		
Crop type		
Reservoir map		
Industrial water dem	??	
Domestic water dem	??	

 \rightarrow Land use & Agriculture model needed?

 \rightarrow New project launched in NIES

Application 2: Estimation of global virtual water flows and sources of water

Hanasaki, N., Inuzuka, T., Kanae, S., Oki, T.: An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. In press, doi:10.1016/j.jhydrol.2009.09.028

Introduction

- Global water resources assessments
 - high water stressed regions are sometimes densely populated
- Virtual water (Allan, 1996)

Water use / Water availability

Low stress High stress

- Regional water scarcity can be alleviated by importing commodities, especially foods
- Production of agricultural/livestock products consumes a large volume of water
- Virtual water complements water resource analyses of local water availability and use

Virtual water export

volume of water that an exporting nation consumes to produce the commodities that it trades abroad (輸出製品を作るために海外の国が消費した水の量)

Sources of virtual water

- Evapotranspiration(蒸発散) of cropland originates from
 - Precipitation
 - Irrigation
 - River
 - Reservoirs
 - Aquifers, aqueduct, glacier

Non-sustainable

Separating the source of virtual water

Objective & Methodology

- Objective
 - Estimate global virtual water flows and their sources
- Research focus
 - International food trade in 2000
 - Five major crop products: barley, maize, rice, soy, wheat
 - Three major livestock products: beef, pork, chicken
- Methodology

National average Evapotranspiration from cropland (sim)

National crop yield

(statistics)

Virtual water export =

Trade matrix (statistics)

Х

Water consumption from cropland

Sources of water Ρ ET Ρ ET ET ET ET (Precip) (Precip) (Precip) (River) (Medium) (NNBW) Large reservoirs 1km^{3} 452 4140km³ Irrigated Rainfed Vithdrawal (1) Land (River) Withdrawal ③ (NNBW=Nonrerewalbe and Nonlocal Blue Water) Mithdrawal (2) Runoff (Medium) **Excess water** River **Medium-size** reservoirs < 1km³ 25000 3280km³

Sources of evapotranspiration from irrigated cropland

Irrigation/Total evaporation

Medium-size reservoirs/Total irrigation

River/Total Irrigation

NNBW/Total Irrigation

NNBW/Total Irrigation

• Reported regions of aquifer overexploitation (Postel, 1999)

NNBW/Total Irrigation

Global flows of virtual water export

Virtual water export (total)

Virtual water export (irrigation)

Virtual water export (Nonlocal/Nonrenewable Blue Water)

Summary

- Global water scarcity assessment
 - Daily basis assessment
- Global virtual water assessment
 - The virtual water export of the world was estimated at 545km³yr⁻¹.
 - Of total, 61km³yr⁻¹ (11%) is irrigation water, and
 26km³yr⁻¹ (5%) is NNBW.

References

- Shiogama, H., Hanasaki, N., Masutomi, Y., Nagashima, T., Ogura, T., Takahashi, K., Hijioka, Y., Takemura, T., Nozawa, T. and Emori, S.: Emission scenario dependencies in climate change assessments of the hydrological cycle, Climatic Change, DOI: 10.1007/s10584-009-9765-1, in press. <u>http://www.springerlink.com/content/k4223u6px5677467/?p=1460a4ebf9054aa8</u> ac8ca8befdca0e76&pi=15
- Hanasaki, N., Inuzuka, T., Kanae, S., Oki, T.: An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model, Journal of Hydrology, in print doi:10.1016/j.jhydrol.2009.09.028 <u>http://dx.doi.org/10.1016/j.jhydrol.2009.09.028</u>
- Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrology and Earth System Sciences, 12, 1007-1025, 2008 <u>http://direct.sref.org/1607-</u> <u>7938/hess/2008-12-1007</u>
- Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrology and Earth System Sciences, 12, 1027-1037, 2008. <u>http://direct.sref.org/1607-7938/hess/2008-12-1027</u>