

Two examples of advanced global climate change impact assessment on water and agricultural sectors

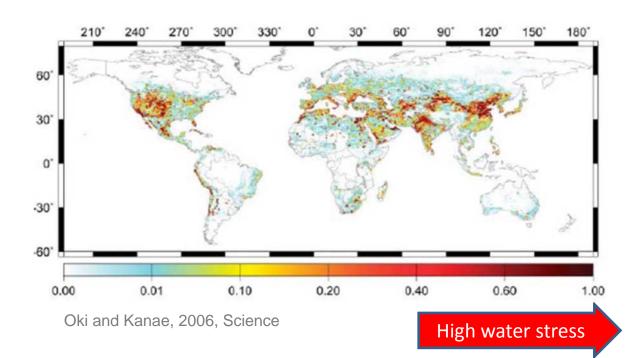
Naota Hanasaki, Takahiro Yamamoto, Yonghee Shin, and Kiyoshi Takahashi (NIES)

Outline

- Global impact assessment on
 - water sector using H08 model
 - agricultural sector using GAEZ model

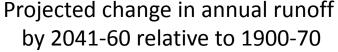
Global impact assessment on water sector

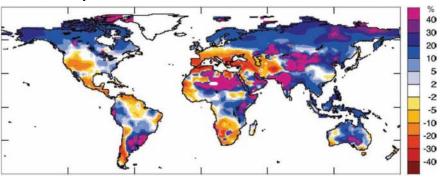
Takahiro Yamamoto and


Naota Hanasaki

Assessing water scarcity

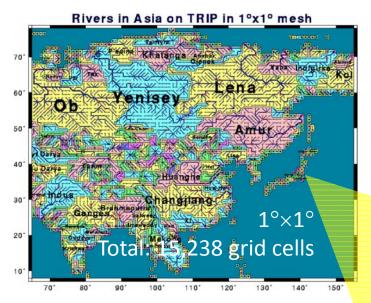
 A number of report have been published to assess water scarcity globally using a widely accepted index <u>Withdrawal</u> to <u>Water Resources ratio</u>.

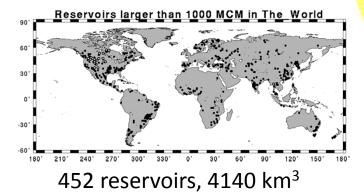

$$WWR = \frac{annual\ water\ withdrawal}{annual\ river\ discharge}$$



Assessing climate change impact

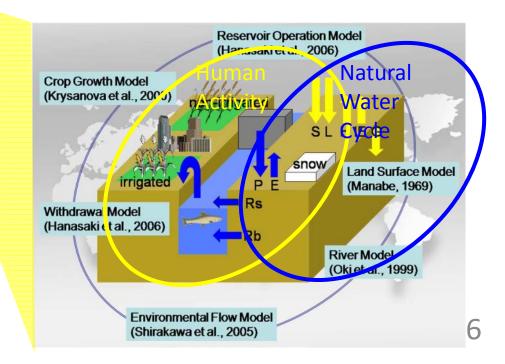
- WWR is widely used in climate change impact assessment.
- Global warming is projected to increase the mean annual runoff in many parts of the world. Therefore, the WWR (= withdrawal / water resources) decrease by its definition in these regions.




Milly et al., 2005, Nature

- However, global warming is also projected to increase the intensity and frequency of precipitation. WWR neglects sub-annual variation.
- Is it appropriate to apply the WWR for climate change impact assessment?

Global water resources model H08

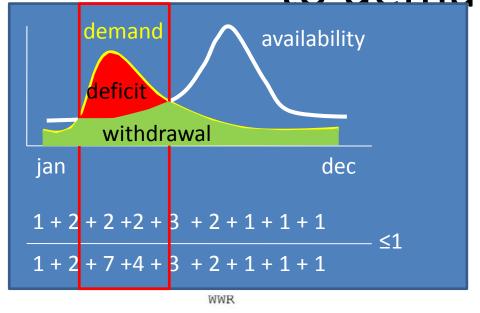


Hanasaki et al., 2006, J. of Hydrol. Hanasaki et al., 2008a,b, Hydrol. Earth Sys. Sci.

Characteristics

- Simulate both water availability (streamflow) and water use at sub-annual basis
- 2. Deal with interaction between natural hydrological cycle and anthropogenic activities

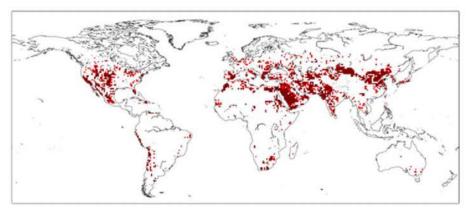
Simulation settings

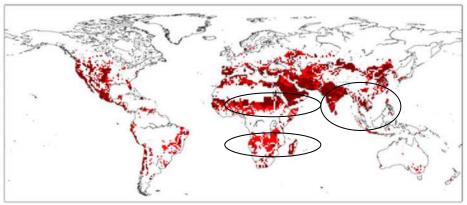

Meteorological (1°×1°, daily)						
Temperature	Present climate condition:					
Relative humidity	•GSWP2(1986-1995)					
Pressure	Future climate condition:					
Wind speed	MIROC3.2medres is used (SRES A2 scenario)					
Short-wave radiation	•Simplistic bias correction for Tair, Precip, Lwdown					
Long-wave radiation						
Precipitation						

Geographical/other(1°×1°)				
Cropland area	Fixed at the present condition			
Irrigated area	Fixed at the present condition			
Crop intensity				
Crop type				
Industrial Dem.	Fixed at the present condition			
Domestic Dem.				
Agricultural Dem.	Simulated			
Population	SRES A2 7			

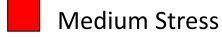
New index: Cumulative withdrawal

to demand ratio




Daily basis

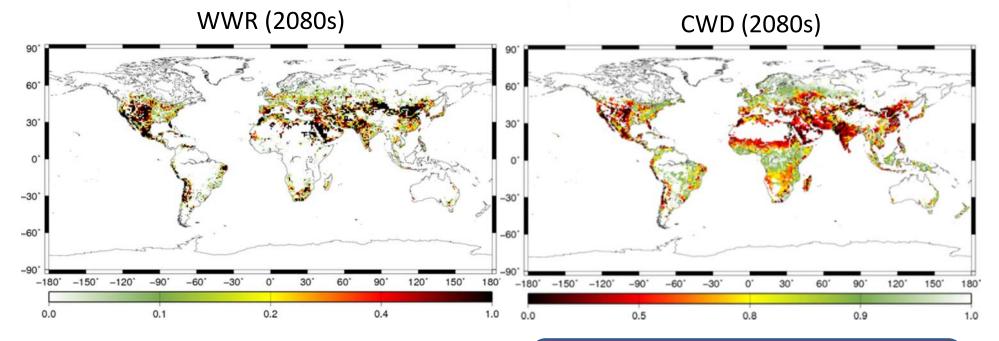
CWD= $\frac{\sum daily \ withdrawal \ (simulated)}{\sum daily \ demand \ (simulated)}$


High stress	Index<0.5	
Medium stress	0.5≤index<0.8	
Low stress	0.8≤Index	

CWD

High Stress

___ Low Stress


Water scarcity assessment

Annual basis

Daily basis

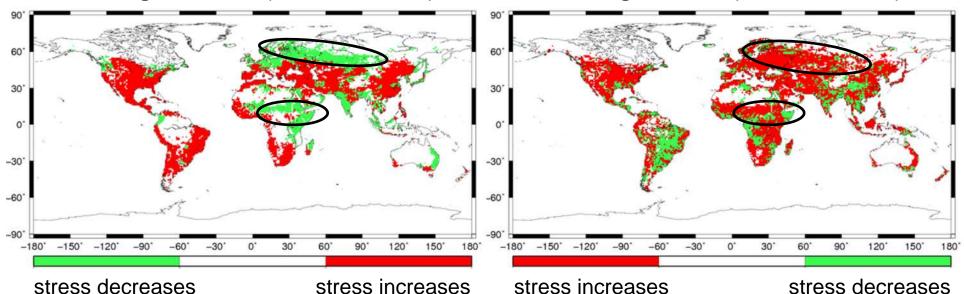
WWR= Annual water withdrawal (statistics)
Annual river discharge (simulated)

 $CWD = \frac{\sum daily withdrawal (simulated)}{\sum daily requirement (simulated)}$

Highly stressed population=5.85 billion (1.81 billion at present. 2.00 billion if population is fixed at present)

Change in water stress

Annual basis

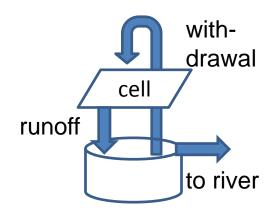

Daily basis

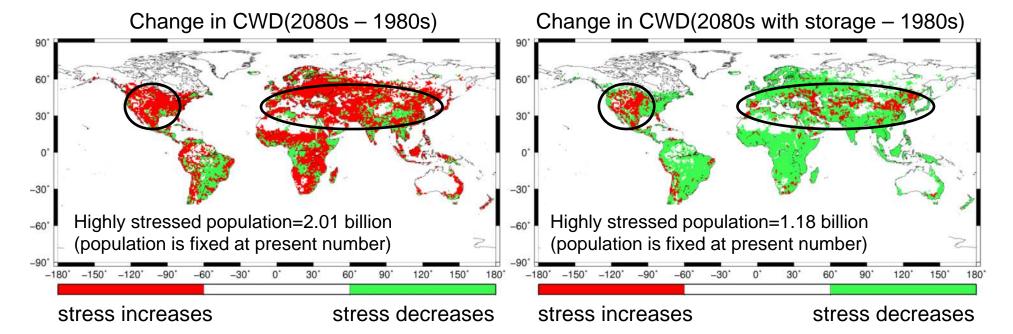
WWR= Annual water withdrawal (statistics)
Annual river discharge (simulated)

 $CWD = \frac{\sum daily \ withdrawal \ (simulated)}{\sum daily \ requirement \ (simulated)}$

Change in WWR (2080s – 1980s)

Change in CWD(2080s - 1980s)


Basically, water scarcity decreases where mean annual runoff increases


Water withdrawal from river increased at limited regions.

Sensitivity of local water storage

- Adding reservoirs to increase local storage capacity
- Method:
 - Added ideal water storage to every grid cell
 - Storage capacity: 2% of mean annual runoff

Summary

- Climate change impact assessment was conducted.
- Conventional water scarcity index WWR on an annual basis showed decrease in water scarcity where runoff increased.
- New water scarcity index CWD on a daily basis showed increase in water scarcity for 42% of the above region.
- The difference was attributed to seasonal gap in water resources and water use.
- As a sensitivity study, simple imaginary water storage was introduced. It drastically decreased water scarcity for many parts of the world.
- However, chronic water scarce regions such as western USA and northern China remained highly water stressed.

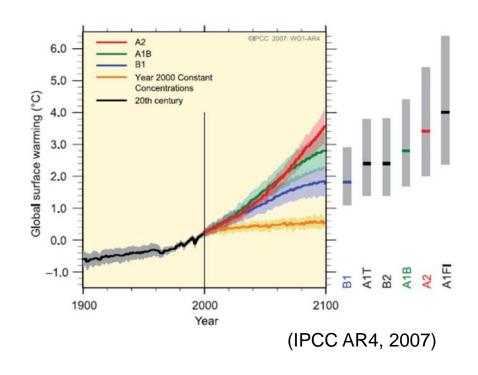
References

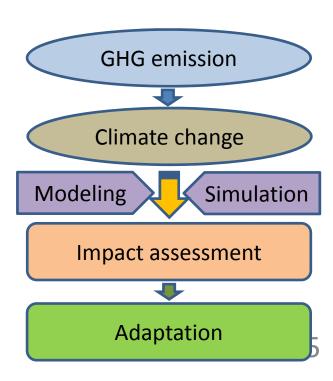
About this presentation

- Paper
 - Yamamoto et al., 2011, Annual
 Journal of hydraulic Eng.
 - Yamamoto et al., Selected Papers of Environmental Systems Research, in preparation
- Presentation (domestic)
 - Yamamoto et al., 2011, Japan Society of Hydrology and Water Resources
- Presentation (international)
 - Hanasaki and Yamamoto, 2010, 2nd
 HESSS
 - Yamamoto et al., 2010, 5th APHW
 - Yamamoto et al., 2010, AGU fall meeting

About H08

- Paper
 - Hanasaki et al., 2006, J. Hydrol.
 - Hanasaki et al., 2008a, Earth Sys. Sci.
 - Hanasaki et al., 2008b, Earth Sys. Sci.
 - Hanasaki et al., 2010, J. Hydrol.


Impact on agricultural sector


Yonghee Shin and Kiyoshi Takahashi

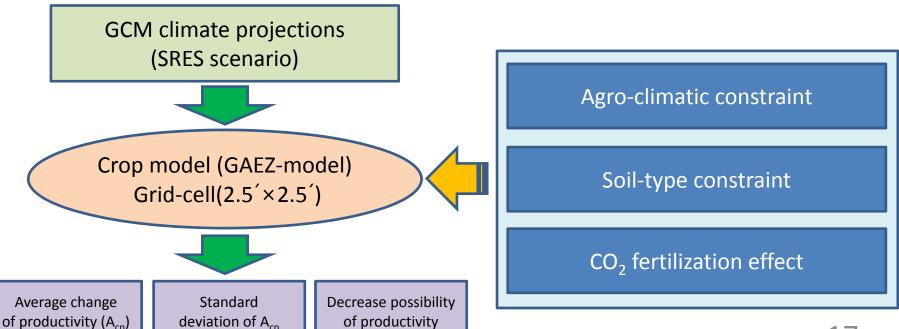
Introduction

- IPCC AR4: Average temperature rise due to anthropogenic greenhouse gas emissions has a large impacts on crop's productivity in the future
- Maize: One of the world's three basic staple crops
- The prediction of productivity change is important

GAEZ

- Global agro-ecological zone study (GAEZ) is a long standing initiative of FAO since 1978 to evaluate biophysical constraints and potentials which determines the yield potential of crops worldwide under different land management conditions
- GAEZ-model was Developed by IIASA and FAO (Fischer et al., 2002) was used for the assessment of global food security in IPCC AR4.

Simulation settings

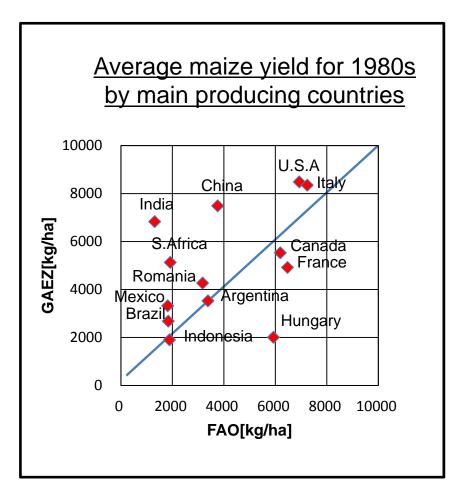

• Area: Worldwide

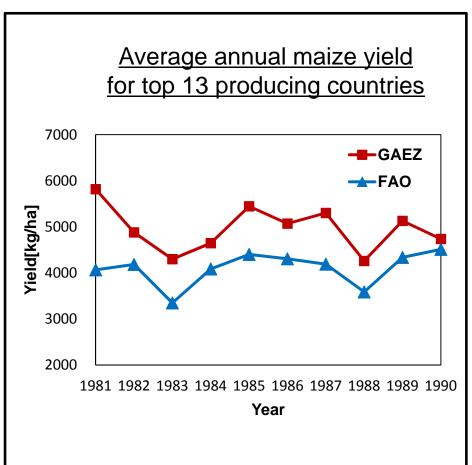
Crop: Maize

Period: 2020s, 2050s, and 2080s; Base: 1990s

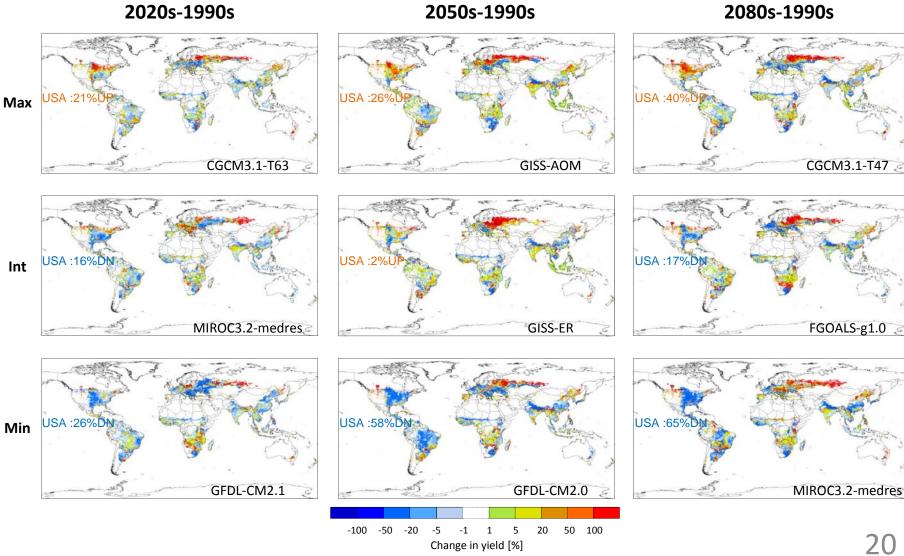
• Emission scenario: SRES A1B, A2, and B1

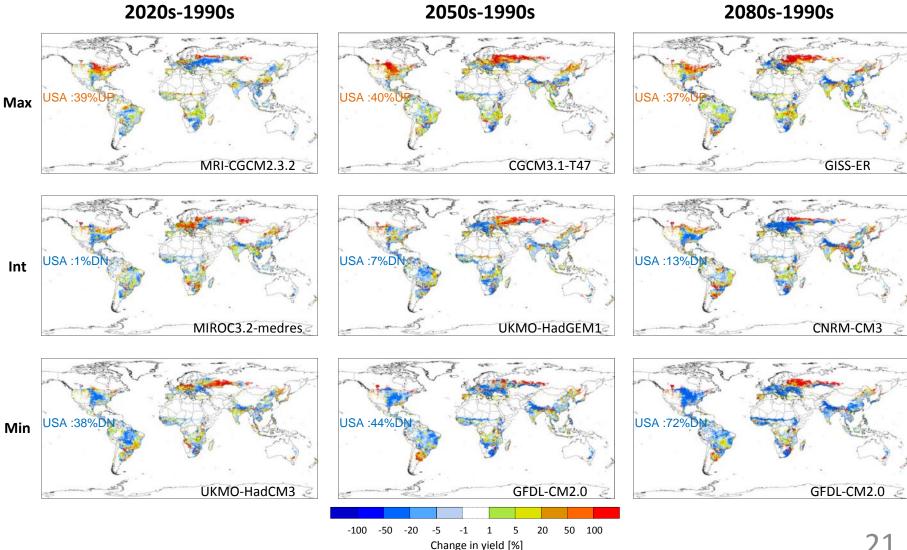
Input: Climate data - Temperature, precipitation, radiation, and wind speed
 Other data - Soil, elevation, fertilizer use, and administrative boundary


Climate projections (from PCMDI)

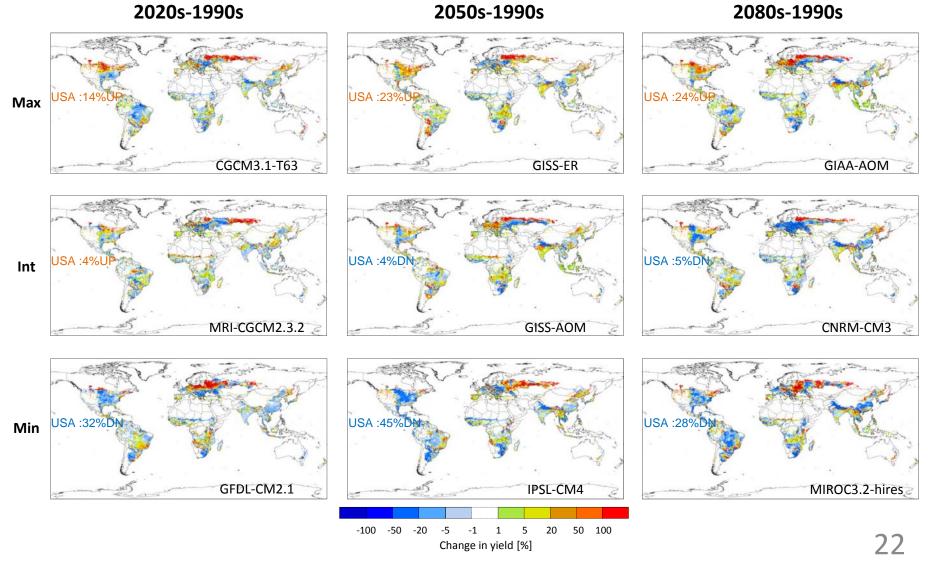

Country	Model name	A1B (18 GCMs)	A2 (14 GCMs)	B1 (17 GCMs)
Norway	BCCR-BCM2.0		0	0
Canada	CGCM3.1(T47)	0	0	0
Canada	CGCM3.1(T63)	0		0
France	CNRM-CM3	0	0	0
Germany	ECHAM5/MPI-OM	0	0	0
Germany / Korea	ECHO-G	0	0	0
China	FGOALS-g1.0	0		0
USA	GFDL-CM2.0	0	0	0
USA	GFDL-CM2.1	0	0	0
USA	GISS-AOM	0		0
USA	GISS-EH	0		
USA	GISS-ER	0	0	0
Russia	INM-CM3.0	0	0	0
France	IPSL-CM4	0	0	0
Japan	MIROC3.2(hires)	0		0
Japan	MIROC3.2(medres)	0	0	0
Japan	MRI-CGCM2.3.2	0	0	0
UK	UKMO-HadCM3	0	0	0
UK	UKMO-HadGEM1	0	0	

18

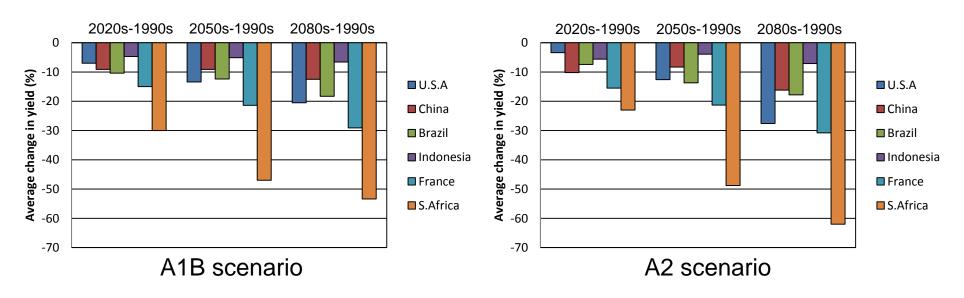

Validation of GAEZ-model

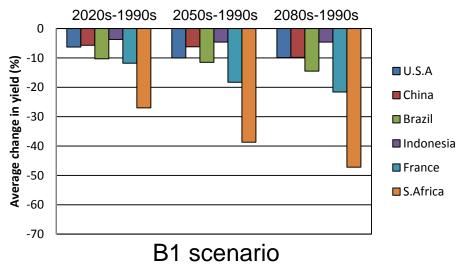


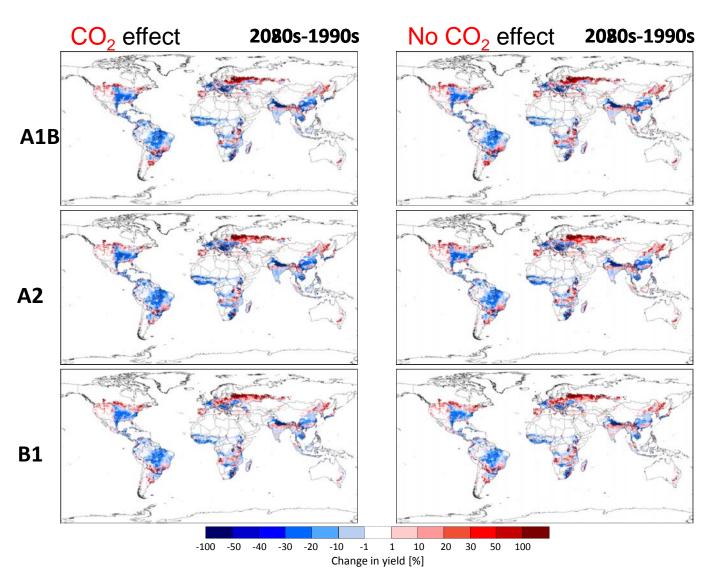
Uncertainty of Maize productivity change by multi GCMs (A1B Scenario)



Uncertainty of Maize productivity change by multi GCMs (A2 Scenario)




Uncertainty of Maize productivity change by multi GCMs (B1 Scenario)


Average change in maize yield

CO₂ Fertilization effect

CO₂ Fertilization effect

Average productivity change in maize for the top 13 producing countries

	Scenario		20s-90s	50s-90s	80s-90s
CO ₂	A1B	Av.	-8.46	-11.74	-16.29
		S.D.	9.05	15.56	16.51
		D.P.	83.33	72.22	77.78
	A2	Av.	-6.49	-11.79	-21.51
		S.D.	12.60	15.49	22.94
		D.P.	64.29	71.43	71.43
	B1	Av.	-7.32	-8.86	-10.13
		S.D.	7.49	11.63	11.19
		D.P.	88.24	76.47	76.47

	Scen	ario	20s-90s	50s-90s	80s-90s
NO_ CO ₂	A1B	Av.	-9.10	-14.94	-20.91
		S.D.	8.99	14.99	15.60
		D.P.	83.33	77.78	88.89
	A2	Av.	-7.12	-15.04	-26.88
		S.D.	12.51	14.92	21.43
		D.P.	64.29	78.57	92.86
	B1	Av.	-7.85	-10.92	-13.15
		S.D.	7.45	11.37	10.81
		D.P.	88.24	82.35	82.35

Av.: Average, S.D.: Standard Deviation, D.P.: Decrease Possibility

Summary

- Average productivity change in maize
 - In the 2020s A1B: -8.8%, A2: -6.8%, B1: -7.5%
 - In the 2050s A1B: -12.0%, A2: -12.4%, B1: -9.1%
 - In the 2080s A1B: -16.2%, A2: -22.0%, B1: -10.2%
- Uncertainty of the Maize productivity
 - In the 2020s (A2 scenario) Max: 12%, Min: -26%
 - In the 2050s (A1B scenario) Max: 12%, Min: -40%
 - In the 2080s (A2 scenario) Max: 10%, Min: -50%
- CO₂ fertilization effect is the most large for A2 scenario in the 2080s(5.37% increase)

References

About this presentation

Paper

- Tubiello, F., et al.: Crop response to elevated CO₂ and world food supply, European Journal of Agronomy, 26, 215-223, 2007
- FAO: Food and Agriculture
 Organization, Rome, Italy, 2009
 http://faostat.fao.org/default.aspx

About GAEZ

Paper

- Fischer, G., et al.: Global Agro-ecological Assessment for Agriculture in the 21st Century: Methodology and Results, IIASA RR-02-02, International Institute for Applied Systems Analysis, Laxenburg, 2002
- Masutomi, Y., et al.: Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models, Agriculture, Ecosystems and Environment, 131, 281-291, 2009

Conclusion

- Water sector
 - Climate change impact assessment on water scarcity focusing on sub-annual issues.
- Agricultural sector
 - Propagation of uncertainties: climate projection into impact assessment.