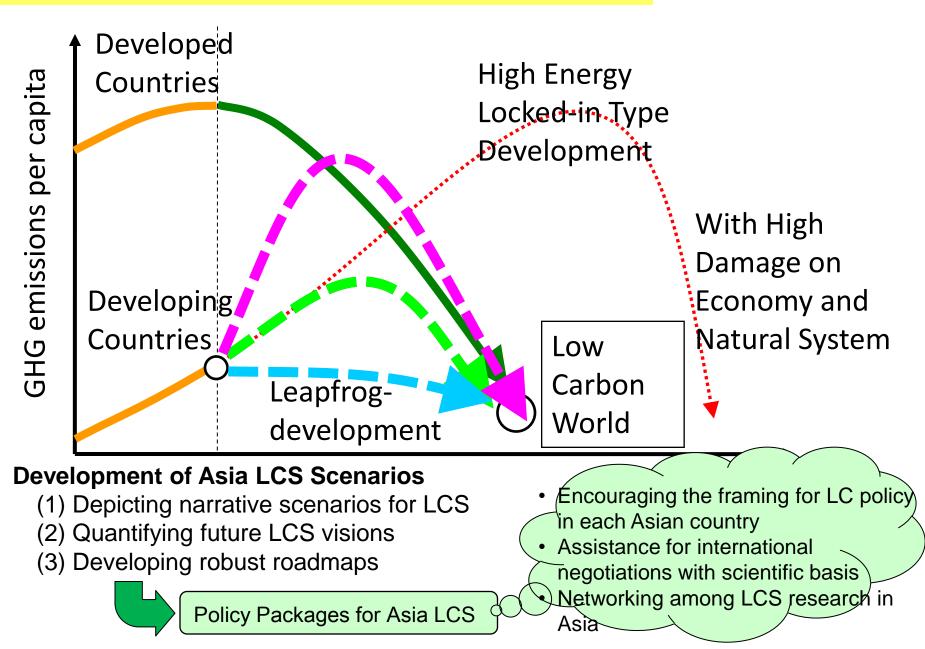
the 17th AIM International Workshop NIES, Tsukuba

AIM research activities towards Low carbon Society in Asia


How to Realize Sustainable Low-Carbon Society: Scenarios and Actions

- 1. If we cannot go to LCS,...
- 2. LCS offers higher QOL with less energy demand and lower-carbon energy supply
- 3. LCS needs good design, early action, and innovations

Mikiko Kainuma National Institute for Environmental Studies

Project is funded by Global Environmental Research Fund, Ministry of Environment, Japan

Asian LCS scenarios study

Two stages of LCS scenario development

Stage one: Design of a Low Carbon Society

- 1. Creation of narrative storylines of future Low Carbon Societies
- 2. Description of sector-wise details of the future LCSs.
- 3. Quantification of the Macro-economic and social aspects of the LCSs.
- 4. Identification of policy measures and packaging the measures

Stage two : Construction of a policy roadmap toward the Low Carbon Society

- 1. Design of policy roadmaps toward the Low Carbon Society
- 2. Feasibility analysis of the roadmaps considering uncertainties involved in element policies
- 3. Analysis of robustness of the roadmap caused by societal, economical and institutional uncertainties and acceptability

Stage 1: Creation of narrative storylines of future Low Carbon Societies

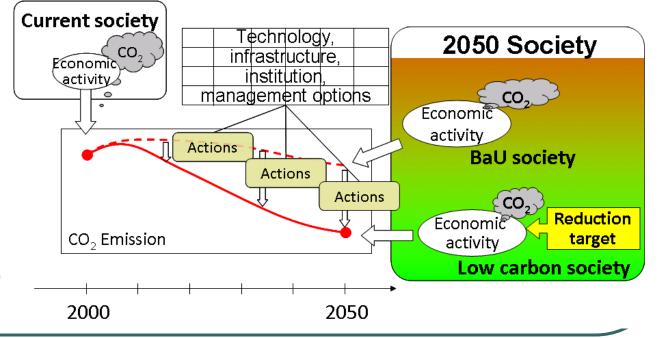
- Examples of Japan 2050 LCS study -

Vision A

For Japan, we prepared two different but likely future societies

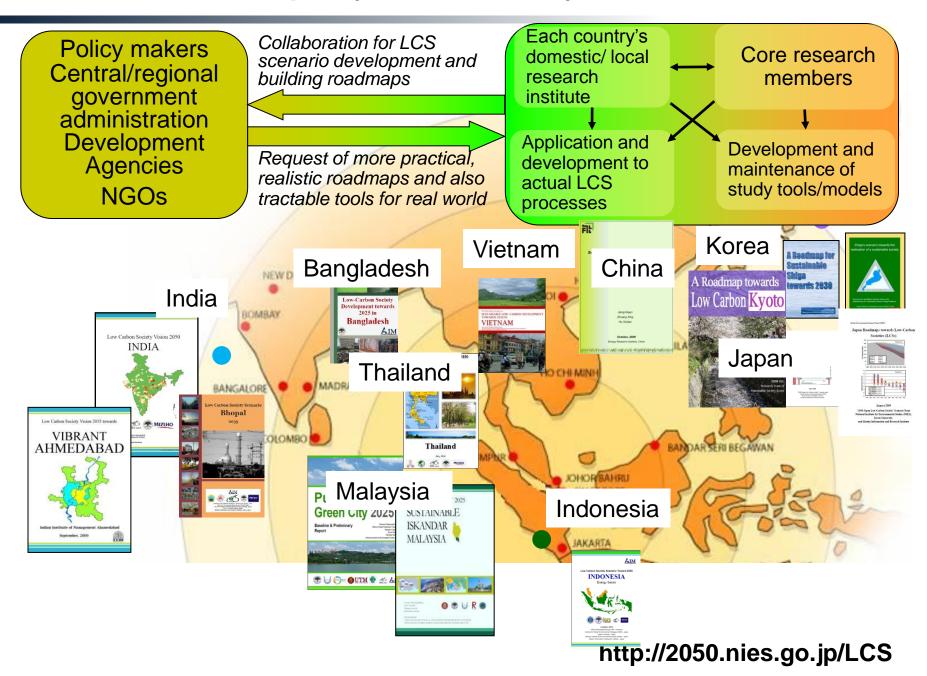
		Urban/Person		
	Vision A	Vision B	Technology br	
Goal of life	Pursue economical "success" in the competitive society and spend much time on their own skill development.	Contribute to society as possible in the various fir their capabilities	Centralized p /recycle	
Work	Pursue high productivity and efficiency. "Success in the economic	Although working is one worthwhile activities, mo placed on balance betwe and life	Comfortable o	
	society has the highest priority over any other factors.			
Residence	Prefer sophisticated and convenient urban life.	Prefer slower and health	14	
Acceptance of advanced technologies	Positively accept new and advanced technologies. People tend to expect advent of new technologies to overcome various social issues.	Take a cautious attitude some advanced technolo Genetic technologies, at power). Accept inconver lifestyle to some extent.		
Presence of Japan	Japan should continue to be a great economic nation and lead the world. In order to achieve the goals, more stress should be placed on economic development policies	Japan should show our p by our own culture or inte cooperation, although ec also important		

Vivid, Technology-driven	Slow, Natural-oriented	
Urban/Personal	Decentralized/Community	
Technology breakthrough Centralized production /recycle	Self-sufficient Produce locally, consume locally	
Comfortable and Convenient	Social and Cultural Values	
2%/yr GDP per capita growth	1%/yr GDP per capita growth	
	Aken Insgan	


Vision B

Stage 2 : Designing roadmaps towards LCS - Back-casting from the target -

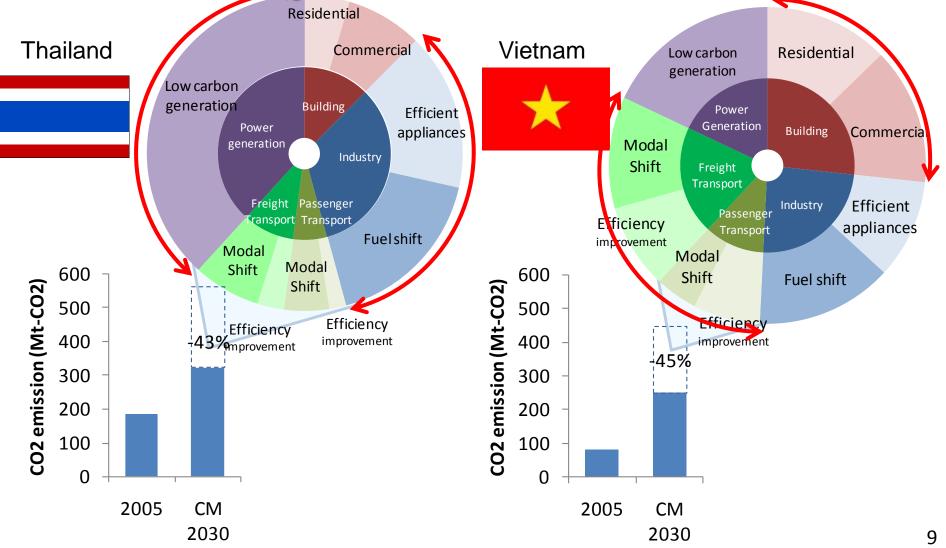
To achieve the emission reduction target, we must clarify the followings


- · how much must we investigate,
- which options should be selected,
- when options should be introduced,
- how much of each option should be introduced at each stage,

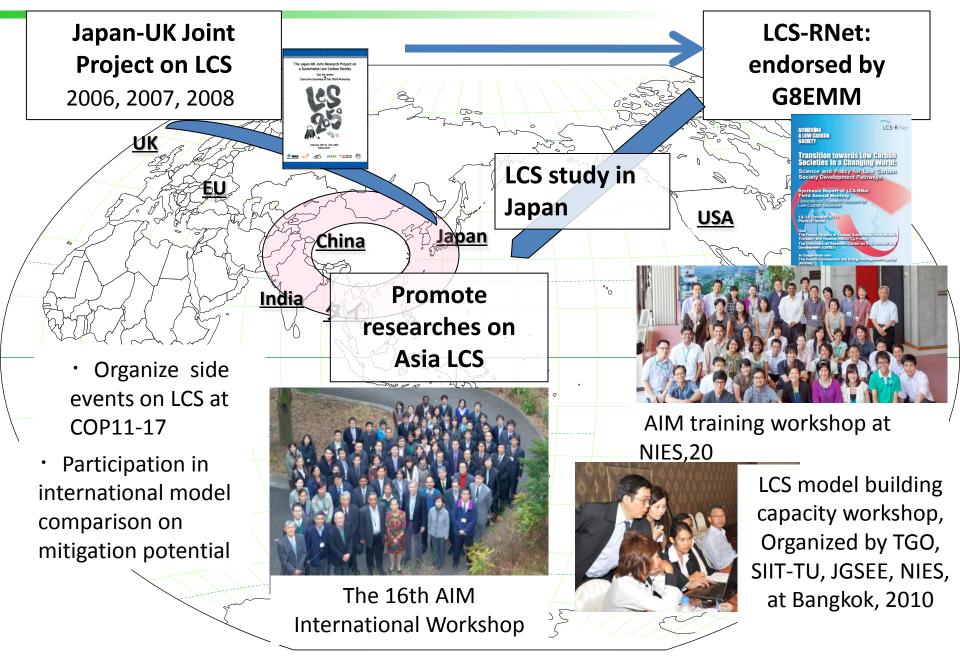
with reference of candidate options.

Key Actions LCS study in Japan toward LCS in Japan A dozen actions make it possible to reduce 70% CO2 emissions by **Comfortable and Green Built** Environment Residential/ 2050 2. Anytime, Anywhere commercial 350 **Appropriate Appliances** 3. Promoting Seasonal Local 300 Food Industrial CO2 emissions [MtC] 250 4. Sustainable Building Materials 5. Environmentally Enlightened 200 **Business and Industry** Transportation 6. Swift and Smooth Logistics 150 7. Pedestrian Friendly City -70% to 1990 Energy 100 Design um supply 8. Low-Carbon Electricity 50 Japan 9. Local Renewable Resources for Local Demand 0 **10. Next Generation Fuels** 2000 2010 2020 2030 2050 2040 11. Labeling to Encourage Smart and Rational Choices **Cross-sector** 12. Low-Carbon Society Leadership

How to deploy our study to real world


Climate and Energy Policies

Country	Economic Growth	Climate Policy	Energy Policy
China	GDP: 4 times from the year 2000 to 2020 (7%pa)	CO2 emissions per GDP: 40-45% reduction by 2020 to 2005 level	Share of non-fossil fuel in PE:15% (2020) Nuclear: 2020 (70-80GW), 2030 (200GW), 2050 (400- 500GW)
Indonesi a	2005-2010:5.5% 2010-2014:6.6% 2015:7.2% 2015-2030:7.2%	26% reduction to BaU during next 10 years. 41% with international support	 Geothermal : more than 5% (2025) Other new/renewable : more than 5% (2025) Bioenergy : more than 5% (2025) Liquid coal: at least 2% (2025) Oil : less than 20%;Gas: more than 30%; coal: more than 33%
India	2007-2012:9%	Emission per GDP: 20- 25% reduction by 2020 to 2005 level	 Primary energy supply: 117EJ(2052) Electricity supply: 75EJ(2052) Renewable energy: 2.7EJ(2052) Nuclear energy: 19.4EJ(2052)
Japan	GDP:more than 2%	2020:25% reduction to 1990 level 2050:80% reduction	 Energy independence and Fossil Fuel develop: double (2030) Increase of zero emission electricity Decrease in energy consumption in household: half
Korea		2020:30% reduction to BaU (4% to 2005 level) Forest sink:1854MtCO2 (2020)	 Energy efficiency: 0.185kgoe/US\$ (46% decrease to present) Share of renewable energy (in primary energy supply): 8.6% (2020), 11% (2030) Emission factor in electricity: 0.11kgC/kwh (2022)
Malaysia	High income country by 2020	2020: 40% reduction to 2005 level with international support (technology transfer and funding)	 Increase of energy import of hydro and coal (2015) Remove subsidy to fossil fuel (2015) Energy saving: 4000ktoe(cumulative by 2015) Renewables in electricity: 24% in 2050 (total capacity: 21.4GW, Electricity generation44208GWh)


The effects of countermeasures differ by country

Scenarios of each region vary in terms of combination of actions and their effects.

Ex) Thailand: Higher reductions from power generation and fuel shift in Industry Vietnam: More focusing on demand side measures such as modal shift etc.

International Cooperation toward Low Carbon Society

Consideration on how to approach LCS

- Fundamental shifts in paradigms regarding economic development and life styles are required to achieve LCS. Most of these factors are exogenous to climate policy, but needs to be integrated.
- 2. Each city/ country/ region has its own background and characteristics. They have their own targets and ways of approach.
- 3. There are many common factors to be considered.
 - Global economy/ financial markets
 - Implementation of energy efficiency measures
 - Reducing the costs and accelerating the diffusion of renewable energy technologies like wind, solar and bioenergy,
 - Forest
 - Co-benefit
- 4. Participation from different stakeholders