RENEWABLES ON THE RIGHT SPOT: SPATIAL MATCHING MODELS FOR LOW CARBON ENERGY SYSTEM DESIGN

DIEGO SILVA HERRAN

NIES, JAPAN

AIM INTERNATIONAL WORKSHOP NIES, TSUKUBA, DECEMBER 2012

CONTENTS

Introduction: "Renewables on the right spot"

Outline of research

Description of models

- Global renewable energy potential model: protected areas, supply-cost curves, spatial matching.
- Local energy system model: plant location, resource allocation.

Future steps in research

INTRODUCTION: "RENEWABLES ON THE RIGHT SPOT"

Looking forward something in between! = PRACTICAL!

WHY IS NEEDED? PURPOSE?

OUTLINE OF RESEARCH

Renewable energy supply using GIS (gridded) data

Global technical potential

- Outputs: technical potential world x35 regions, supply cost curves, maps
- Contribution: integrated models considering renewables, S-6 project

Local energy system model using renewables

- Outputs: optimal mix of renewables in local region,
- Contribution: feasibility of renewable energy targets to policy makers in local areas, Iskandar Malaysia (SATREPS project)

GLOBAL RENEWABLE ENERGY POTENTIAL MODEL

Technical energy potential

Renewable energy

- Solar radiation: solar PV
- Wind speed: onshore wind turbines
- Forest biomass (natural growth, residues): direct combustion in boilers

35 world regions (focus on Asia)

Area

6

ACCOUNTING FOR NATURAL CONSERVATION (PROTECTED AREAS)

"Loss" in technical potential [MWh/yr]

Solar PV = 11%

Onshore wind = 10%

Forest biomass = 17%

Technical potential
Solar PV [MWh/yr]
High : 2835
Low : 0
Zones in protected areas

Technical potential

Onshore wind [MWh/yr] High : 1601

Low : 0

Zones in protected areas

Forest elec. [MWh/yr] High : 142 Zones in protected areas

Technical potential

SUPPLY (POTENTIAL) COST CURVES

SPATIAL MATCHING IN GLOBAL TECHNICAL POTENTIAL

Spatial matching = Proximity to urban areas

Threshold for distance to urban areas; Transmission losses

Solar PV and onshore wind electricity generation

Neglect current electricity transmission networks (grids)

SPATIAL MATCHING IN GLOBAL TECHNICAL POTENTIAL

LOCAL ENERGY SYSTEM MODEL USING RENEWABLES

Technology (plant site) location + Resource allocation

Optimization: MIP (mixed integer programming)

Objective function: Minimize Total cost

Solved using GAMS (General Algebraic Modeling System)

Structure of local energy system model

LOCAL ENERGY SYSTEM MODEL – OUTCOMES

Demand = 550 GWh (i.e. 5% electricity demand)

- PV supply = 91 % (1,941-1,981 MWh/yr/cell)
- Wind supply = 9 % (73 MWh/yr/cell)

Demand = All forest potential (157 GWh)

• 1.5% of electricity demand

FUTURE STEPS

Spatial matching in global model

- Proximity to urban areas: Impact on costs?
- Incorporate population and consumption per capita data
- Deployment of renewables based on spatial matching: On-site vs off-site
- Load (electricity demand) matching: compare size of supply and demand for locating plants

Spatial matching in local model

- Generic model formulation
- Incorporate detailed data: land use, renewable resources
- Model application to other regions in Asia

Focus on biomass

Energy crops

Dynamic aspects of renewable supply

Scenarios (e.g. land use)

THANK YOU VERY MUCH!

COMMENTS AND QUESTIONS ARE WELCOME!