The 18th AIM International Workshop Ohyama Memorial Hall at NIES 14-15 December 2012

Non-CO2 Emissions Analysis: Expansion of AIM/Enduse[Global]

Tatsuya HANAOKA National Institute for Environmental Studies

1. Major outcomes of AIM/Enduse[Global] in FY2011-FY2012

2. Remaining issues for analyzing technological feasibility of "2 degree target" and "50% reduction target"

3. Fluorocarbons emissions analysis and How it important in Asia regions

Major Outcomes of AIM/Enduse[Global] NIES JAPAN in FY2011-FY2012

- 1. Technology options for meeting a 2.6W/m2 target are evaluated in Asia & World.
- 2. Top five key technologies are CCS, solar, wind, biomass, and biofuel which in total account for 60% of global GHG emissions reduction in 2050.
- 3. If the use of CCS or biomass is limited, cumulative GHG abatement cost until 2050 increases considerably. CCS and biomass have a vital role in curbing mitigation costs

Source)

Akashi, O., Hijioka, Y., Masui, T., Hanaoka, T., and Kainuma, M. (2012) GHG emission scenarios in Asia and the world: The Key technologies for significant reduction, Energy Economics 34:s346-s358

Major Outcomes of AIM/Enduse[Global]

- 1. Technological feasibility of achieving a 50% global GHG emission reduction target in 2050 and its transition in 2020 are evaluated.
- 2. MAC to achieve the target is \$150/tCO2 eq in 2020, \$600/tCO2 eq in 2050.
- 3. Additional investment for achieving the target is US\$6.0 trillion by 2020 and US\$73 trillion by 2050 (corresponding to 0.7% and 1.8% of the world GDP, respectively).

Source)

Akashi, O. and Hanaoka, T. (2012) Technological feasibility and costs of achieving a 50 % reduction of global GHG emissions by 2050: mid-and long-term perspective, Sustainability Science, 7:139-156

- 1. Strengthening mitigation options in the demand-side
 - Residential sector
 - Industry sector
- 2. Updating constraints in the supply-side
 - Potentials&costs of renewables (biomass)
 - Tracking power plants data based on LPS
- 3. Reassembling datasets in non-energy & non-CO2 sectors
 - Fluorocarbons sector, including Non-Kyoto Gas (i.e. CFCs, HCFCs)
 - CH4 emissions in waste sector

Today's Topic

- 4. Co-benefits of reducing global non-CO2 emissions (SO2, NOx, etc)
- 5. Discussions on service demands and their transitions
- 6. Updating AIM/Enduse itself and improving interface
- 7. Strengthening linkage with CGE[Global]

NIES JAPAN

Environmental Impacts of major gases

	Gas	ODP	GWP(SAR)	GWP(AR4)	Major sectors		
CFC	CFC-11	1.0	4000	4750	Closed/Open foam, Aerosols, etc		
	CFC-12	1.0	8500	10900	Refrigerant (automobile air-conditioning, refrigeration etc)		
	CFC-113	0.8	5000	6130	Solvent (Electronic component, dry-cleaning etc)		
	CFC-114	0.8	9300	10000	Open foam		
HCFC	HCFC-22	0.055	1700	1810	Refrigerant (room air-conditioning, commercial refrigeration etc)		
	HCFC-141b	0.11	630	725	Closed foam, Open foam, Solvent(Electronic component), etc		
	HCFC-142b	0.065	2000	2310	Open foam		
	HFC-23	0	11700	14800	By-product of HCFC-22 production		
	HFC-134a	0	1300	1430	Refrigerant, Closed/Open foam, Aerosols,		
	HFC-152a	0	140	124	Aerosols, Closed foam		
HFC	HFC-32	0	650	675	Mixed refrigerants		
	HFC-125	0	2800	3500	Mixed refrigerants		
	HFC-143a	0	3800	4470	Mixed refrigerants		
	HFC-227ea	0	2900	3220	Aerosols, Fire Extinguishers		
PFC	CF4	0	6500	7390	AL production, Semiconductor Manufacturing, etc		
	C2F6	0	9200	12200	AL production, Semiconductor Manufacturing, etc		
SF6	SF6	0	23900	22800	Semiconductor Manufacturing, Electric Utilities, etc		

Note1) GWP values in IPCC SAR (*Climate Change 1995*) are used for GHGs national inventory reports under UNFCCC, because of the stipulation in the Kyoto Protocol

Note2) GWP values in IPCC AR4 (*Climate Change 2007*) are the latest and will be used for GHGs national inventory under UNFCCC, after 2015 (i.e. when we report emissions in 2013).

CO2 emissions per person in 2010 in Japan = 9.31 tCO2

Background information: International Regimes and Issues

Issue1) Insufficient linkage between the Kyoto Protocol and the Montreal Protocol

Protocol	Regulation	Target gas	Greenhouse Gas (GHG)	Ozone Depleting Substances (ODS)
куото	Emissions CO2, CH4, H2O, HFCs, PFCs, SF6		Yes	No
MONTREAL Productions Consumptions		CFCs, HCFCs, Halons, Carbon tetrachloride, 1,1,1-trichloroethane, Methyl bromide	Yes	Yes

ODSs are also GHGs, but no international regulation on ODS emissions.
 They have been emitted without measures, in developed/developing countries

Q1 How large emissions in CO2?

Issue 2) Phase-out schedule of production and consumption under the Montreal Protocol

CFCs was abolished, but banked CFCs will be released at the time of disposal.
HCFCs is not yet regulated in developing countries and produced large amounts.

Q2 Phase-out is far from enough?

Issue3) Limitations of financial/technological mechanism under the Montreal Protocol

- ✓ Montreal Multilateral Fund only support measures for achieving phase-out schedule of production and consumption. There is no fund to support measures for emissions reductions.
- Recovered fluorocarbons (e.g. refrigerants) are treated as chemical waste, thus it will be forbidden to take out the country because of the Basel Convention.

Developing countries must treat recovered fluorocarbon in own countries.
 But, there is no fund, no technology and no system for recovery and treatment

Q3 How much fund & cost?

Issue 4) Limitations of financial/technological mechanism under the Kyoto Protocol

Issue5) Lack of accuracy and lack of detailed data in fluorocarbon inventory

- ✓ Lack of accuracy of data (e.g. incomplete data and outlier in UNEP database)
- ✓ Inconsistency of units between different database (e.g. in ODP ton, metric ton, and CO2 ton)
- ✓ Lack of detailed data by gas and by category (e.g. aggregated all gases in UNEP database)
- ✓ Lack of data of major countries (e.g. China, India, Russia in AFEAS database)
- ✓ Suspected data (e.g. inconsistency b/w emission factor and emissions in UNFCCC database)

It is necessary to create reliable global inventory from scratch.
 Detailed data by gas & category are necessary to convert inconsistent units.

5 How accurate and detail?

Issue6) Large effects caused by difference of Global Warming Potentials

Note) AFEAS database is used for representing global fluorocarbon production, however the database is missing some major developing countries (e.g. China, India, Russia). Thus, this figure shows underestimated values. (e.g. CFCs production in 2004 represents 16 % of global production reported in UNEP).

Target Sectors and Gases

Code	Category	GHG	Mitigation option
ВҮР	By-production emission	HFC	Thermal oxidation
REF	Refrigerants	CFC, HCFC, HFC, PFC	Alternative refrigerants (carbon dioxide, hydrocarbons, NH3, etc), Leakage reduction, Recovery, Decomposition
ARS	Aerosols	CFC, HCFC, HFC	Alternative aerosol (hydrocarbon aerosol propellants, not-in- kind alternatives), 50% reduction (for medical applications, general aerosol propellants)
FOM	Foams	CFC, HCFC, HFC, PFC	Recovery, Decomposition, Alternative foams (water-blown CO2 systems, liquid CO2 foam blowing, hydrocarbon foam blowing)
SLV	Solvents	CFC, HCFC, HFC, PFC	Alternative solvents (NIK aqueous, NIK semi-aqueous), Retrofit options, 50% reduction
FEX	Fire Extinguishers	HFC, PFC	Inert gas systems, Water mist, Leakage reduction & recovery
SEM	Semiconductor Manufacture	HFC, PFC, SF ₆	Cleaning facility (NF3 in situ clean, NF3 remote clean), Recapture/destroy, Plasma abatement, Catalytic destruction, Thermal oxidation
ALM	Aluminium Production	PFCs, SF ₆	Retrofit(PFPB,SWPB,CWPB,VSS,HSS)
MGS	Magnesium Foundries	SF ₆	SO ₂ replacement, Recovery and recycling, Alternative fluorinated compounds
ELU	Electrical Equipment SF ₆		Leak detection, Device recovery & recycling

Overview of Global Fluorocarbon Modeling

NIES JAPAN

- 1. Creation of the latest global inventory by gas, by category and by country
 - UNEP Ozone Secretariat database
 - > AFEAS database
 - UNFCCC National Inventory reports in all Annex I countries
 - Various national statistics/report (Japan, EU, China, Russia, Indonesia, etc)
 - Journal Papers (McCulloch 1998, 2003, 2006, 2007, Miller 2010, etc)
- 2. Baseline consumption scenario
 - CFCs, HCFCs : Following phase-out schedule under the Montreal Protocol
 - > HFCs
- : Alternatives of CFCs and HCFCs considering phase-out (extrapolating data by sector, based on GDP&POP growth)
- PFCs, SF6 : BaU (extrapolating based on GDP & POP growth)
- 3. Baseline emission functions
 - Emissions functions are determined by considering the time delays between consumption and emissions depending on different service types in each category (e.g. refrigerants, aerosols, foams, solvents, others)
 - > Leakage of banked refrigerants during the use of appliances is considered
 - HFC-23 emission ratio (by-product of HCFC-22 production) is considered both in dispersive use and feedstock use.

Note) This is still tentative result under the updating process of global fluorocarbon inventory

- □ Emissions of CFCs & HCFCs are larger than those of fluorinated gases under the the Kyoto GHGs in the mid-term (up to 2030), even if the world regions follow the phase-out schedule of production/consumption under the Montreal Protocol.
- □ It is important to consider early mitigation actions in Asia in the next 10 -20 years

It should be focused on when discussing the mid-term targets in the international regimes.

Thank You