The 18th AIM International Workshop: Session X
National Institute for Environmental Studies, Tsukuba, Japan
14–16. December 2012

Feasibility of 50% global GHG emission reduction

Reina Kawase Kyoto University

Research questions

- > Reduction targets of regions by 3 burden-sharing schemes
 - (1) Emission per capita (pCAP)
 - (2) Emission per GDP (pGDP)
 - (3) Cumulative emission per capita (pCUM)
- ➤ Feasibility of 50% global GHG emission reduction in 2050 compared with 1990
- > Feasibility of reduction target of each region
- Differences of reduction targets by
 - GHG total vs GHG excluding LULUCF
 - Target year: 2050 vs 2075
 - etc

Three burden-sharing schemes

Target Year: 2050

- **◆**Emission per Capita (pCAP)
- ◆Emission per GDP (pGDP)
- **◆**Cumulative emission per capita (pCUM)

Cumulative emission per capita = cumulative emission from 2020 / cumulative population from 2020

If target year is set before 2020, it is impossible to equalize cumulative emission per capita.

Emission path:

constant change rate of GHG/GDP pass the pledges in 2020

Reduction target in 2050 (compared with 2005, %)

Region	pCAP	pGDP		pCUM Region		pCAP	pGDP		pCUM
		ADV	CNV				ADV	CNV	
Japan	83	43	18	94	Middle East	58	48	56	77
China	68	59	61	97	Australia	89	68	58	99
Indonesia	69	88	88	81	New Zealand	78	46	40	87
India	-51	41	53	-100	Central Asia	71	82	90	81
Korea	85	57	49	99	Canada	89	68	58	100
Malaysia	-116	-163	-181	51	USA	87	57	40	99
Taiwan	87	54	39	99	EU-15	80	48	33	89
Thailand	61	54	65	85	EU-10	80	68	71	96
Vietnam	12	60	74	32	EU-2	74	74	83	95
Singapore	75	14	-16	92	Turkey	32	20	24	56
Philippines	-104	39	33	-376	Oth. WE in Annex I	67	-30	-87	69
Oth. East Asia	66	89	95	81	Oth. EE in Annex I	80	87	92	97
Oth. South Asia	-120	4	52	-371	Other Europe	59	62	77	74
Oth. Southeast Asia	74	92	96	87	Russia	85	84	90	100
Oth. Oceania	33	45	65	43	Mexico	56	29	36	74
Asia	46	57	59	47	Argentine	69	32	28	92
Asia excl. JPN	42	58	63	43	Brazil	83	79	80	88
Annex I	83	58	46	95	Oth. Latin America	52	43	57	52
Non-Annex I	42	57	65	34	South Africa	76	66	74	93
World	58	58	58	58	Other Africa	-22	49	73	-105

Relationship among three burden-sharing schemes

The pCAP and pCUM schemes have roughly a linear relationship.

pGDP; ADV scenario---developed countries: high reduction targets.

CNV scenario---developing countries: high reduction targets

How to check "feasibility"

- ◆GDP: world growth rate : ADV (3.39%/yr), CNV (2.23%/yr)
- ◆EI, CI: 1) past trend (2000-2008)
 2) assume for future emissions scenarios in past studies (Asia LCS report, SRES, WEO, Asia/World EO, ER)

Improvement rate of EI and CI (%/yr)

If improvement rates are minus (deterioration), improvement rates of El and Cl are set as zero for GHG projection.

4 reduction case (ex. Japan)

4 reduction case: TRN, PLG, PLG+, RED

Emission scenarios of sources by 4 cases

Period	Source	Reduction case						
	PLG							
		TRN	Without pledge	With pledge	Without pledge	With pledge	RED	
2008	Energy	For both EI and CI, the speed of improvement from 2000 to 2008 continues						
~ 2012	Industry, Solvent, Other	Assume the same speed of improvement as energy related emission						
	F-gas AFOLU	Keep 2008 er	mission level					
2013	Energy	For both EI ar speed of impr 2000 to 2008	ovement from	Improve towards meeting pledge while keeping a constant speed of change in GHG/GDP	For both EI and CI, the speed of improvement from 2000 to 2008 continues	Improve towards meeting pledge while keeping a constant speed of change in GHG/GDP	Both EI and CI change at a high speed of improvement	
\sim 2020	Industry, Solvent, Other	Assume the same speed of improvement as energy related emission		Assume the same speed of improvement as energy related emission	Assume the same speed of improvement as energy related emission	Assume the same speed of improvement a energy related emission		
	F-gas	Keep 2008 er	nission level		Keep 2008 emission			
	AFOLU			Linear reduction in emissions to 0 in 2050	level	Linear reduction in emissions to 0 in 2050		
2021	Energy	For both EI at speed of impression 2000 to 2008	ovement from	For both EI and CI, the sp from 2000 to 2008 continu	r both EI and CI, the speed of improvement om 2000 to 2008 continues		Both EI and CI change at a high speed of	
\sim 2050	Industry, Solvent, Other	Assume the s improvement related emissi	••	Assume the same speed of improvement as energy related emission	Assume the same speed of improvement as energy related emission	continues	improvement	
	F-gas	Keep 2008 er	mission level		Keep 2008 emission			
	AFOLU			Keep 2020 emission level	level	Linear reduction in emiss	ions to 0 in 2050	

Result 1: Feasibility of 50% global GHG emission reduction in 2050 compared with 1990

	Economic Scenario							
Reducion	Αſ	ΟV	CI					
case	GHG Emission	Reduction from 1990	GHG Emission	Reduction from 1990				
	(GtCO2eq)	(%)	(GtCO2eq)	(%)				
1990	35.7		35.7					
2005	42.1	-17.7	42.1	-17.7				
TRN	112.9	-216.1	70.3	-96.8				
PLG	92.5	-158.8	57.1	-59.7	achieve			
PLG+	109.0	-205.2	70.5	-97.2	50%			
RED	21.5	39.9	12.1	66.1				

The GHG emissions in the world increase compared to 1990 under all cases except RED case.

Result 2: Feasibility of reduction target of each region

11

Result 3: Effect of economic scenario

Result 4: Target year and LULUCF

	GHG emission			pCAP Reduction target (%)				
Regions	(MtCO2e	q)		2050		2075		
	1990	2005	2005LU	GHG total	GHGexLU	GHG total		
Japan	1197	1261	-90	83	- 35	73		
China	3931	7946	69	68	69	21		
Indonesia	1165	1791	1126	69	15	46		
India	1387	2145	33	-51	54	-100		
Korea	301	590	-35	85	86	65		
Malaysia	199	39	-215	-116	67	-368		
Taiwan	137	290	0	87	87	67		
Thailand	208	349	13	61	59	18		
Vietnam	99	226	9	12	ô	-55		
Singapore	33	48	0	75	75	55		
Philippines	96	146	1	-104	-106	-84		
Oth. East Asia	221	171	46	66	53	38		
Oth. South Asia	357	539	9	-120	-123	-168		
Oth. Southeast Asia	944	647	495	74	-9	46		
Oth. Oceania	42	52	36	33	-116	-36		
USA	5320	6157	-1028	87		70		
EU-15	4044	3932	-255	80	81	66		
World	35732	42061	3264	58	54	25		

Thank you

Works in FY 2012

Burden Sharing (MEM_BS)

- > 3 burden-sharing schemes
 - (1) Emission per capita (pCAP), (2) Emission per GDP (pGDP), and (3) Cumulative emission per capita (pCUM)
- Description
 - 230 countries
 - GDP: ADV scenario and CNV scenario

Material Stock Flow Model (MSFM)

- > Finalize world model
- > Separate country model