Development of Low Carbon Society Scenarios for Asian Regions 19th AIM international workshop Ohyama Memorial Hall NIES, Tsukuba Japan Dec 13-14 2013.

Low carbon Society Blueprint and Roadmap towards Low Carbon Iskandar Malaysia 2025

Ho Chin Siong, Kei Gomi, Yuzuru Matsuoka, and Fujino Junichi 13 December 2013

Email: ho@utm.my/ csho59@yahoo.com

Development of Low Carbon Society Scenarios for Asian Regions

Research Team: Universiti Teknologi Malaysia (UTM), Kyoto University (KU), Okayama University (OU), National Institute for Environmental Studies (NIES)

Joint Coordinating Committee: Iskandar Regional Development Authority (IRDA), Federal Department of Town and Country Planning (JPBD), Malaysia Green Technology Corporation (MGTC)

Sponsorship: Japan International Cooperation Agency (JICA), Japan Science and Technology (JST)

Period: 2011 - 2016

Research Output:

I. **Methodology** to create LCS scenarios which is appropriate for Malaysia is developed.

II. LCS scenarios are created and utilized for policy development in IM.

III. Co-benefit of LCS policies on air pollution and on recycling-based society is quantified in IM

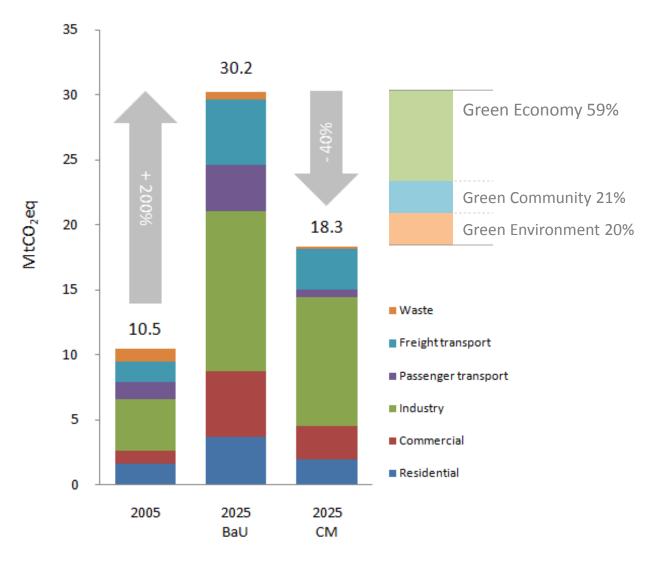
IV. **Organizational arrangement of UTM** to conduct trainings on LCS scenarios for Malaysia and Asian countries is consolidated, and a network for LCS in Asia is established

02 Background

Iskandar Malaysia: Key Challenges

Size: 2,216.3 km²

Population: 1.3 mil. (2005) | 3.0 mil. (2025) GDP: 35.7 bil. RM (2005) | 141.4 bil. RM (2025)


Issues

- _ Rapid urbanization and industrialization
- _ Relatively high carbon intensity dependence on fossil fuel
- _ High private car ownership
- _ Low density development and urban sprawl
- Low efficiency appliances

Government Policy Directions

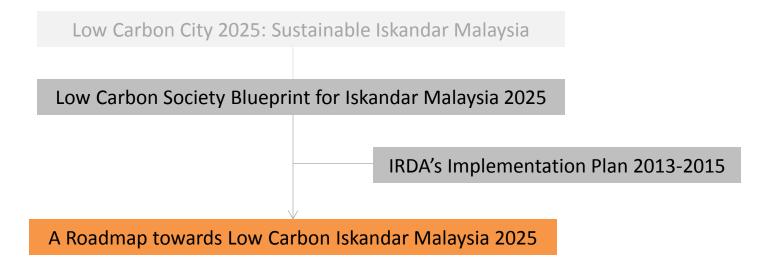
- _ National Green Technology Policy
- _ National Policy on Climate Change
- _ National Renewable Energy Policy and Action Plan
- _ National Policy on the Environment
- _ 10th Malaysia Plan
- _ Green Neighborhood Planning Guideline
- _Low Carbon Cities Framework and Assessment System

04 Potential Mitigation Options for Iskandar Malaysia Green Economy, Green Community and Green Environment

04 Potential Mitigation Options for Iskandar Malaysia 12 Actions Towards Low Carbon Future

Mitigation Options	CO2	%
	Reduction	
Green Economy	7,401	59%
Action 1 Integrated Green Transportation	1,916	15%
Action 2 Green Industry	1,085	9%
Action 3 Low Carbon Urban Governance**	-	-
Action 4 Green Building and Construction	1,338	11%
Action 5 Green Energy System and Renewable Energy	3,061	24%
Green Community	2,557	21%
Action 6 Low Carbon Lifestyle	2,557	21%
Action 7 Community Engagement and Consensus Building**	-	-
Green Environment	2,510	20%
Action 8 Walkable, Safe and Livable City Design	264	2%
Action 9 Smart Urban Growth	1,214	10%
Action 10 Green and Blue Infrastructure and Rural Resources	620	5%
Action 11 Sustainable Waste Management	412	3%
Action 12 Clean Air Environment**	-	-
Total	12,467**	100%

After the Low Carbon Society Blueprint – What's Next?

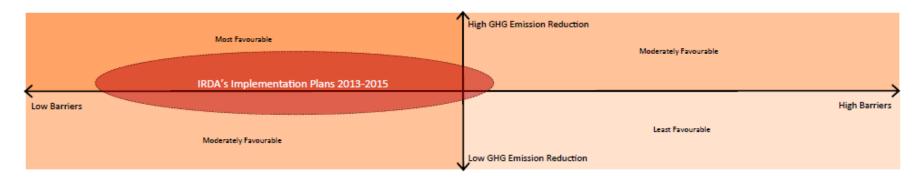


The *Low Carbon Society Blueprint for Iskandar Malaysia 2025*, officially launched by the Prime Minister of Malaysia and adopted by the Iskandar Regional Development Authority (IRDA) in 2012, sets a target for 50% carbon intensity reduction in 2025 as compared to the 2005 level and recommends a total of 283 strategic policies towards minimizing carbon emissions in Iskandar Malaysia (IM).

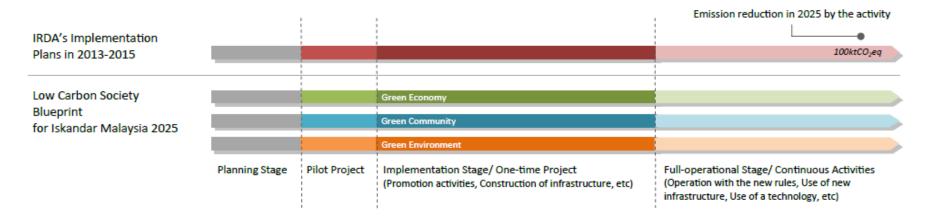
Taking the blueprint into the implementation phase poses several questions:

Which policies should come first? How long should the implementation period be? When should these policies be implemented? Who are the potential implementation agencies involved with these policies?

A Roadmap towards Low Carbon Iskandar Malaysia 2025


This roadmap has been formulated to serve as a **complementary document** to the blueprint. It provides **a pathway to guide the implementation of policy** actions proposed in the blueprint by **outlining implementation programmes**

according to the given priority, timeline and related implementation agencies, including the 10 implementation plans that IRDA has identified for 2013-2015 period.


LCS Blueprint, IRDA's Implementation Plan and LCS Roadmap

\searrow			Sp	ecific Ac	tion-bas	ed Proje	cts		Sp	ecial Pro	jects
12 Ac Bluep	GI-1 Green Economy Guidelines for IM	GI-2 Portal on Green Technology for Iskandar Malaysia	GB-1 GAIA (Green Accord Initia- tive Award)	GT-1 Mobility Management System	LL-1 Eco-Life Challenge Schools Project	RR-1 Trees for Urban Parks/ Forests	RR-7 Responsible Tourism and Biodiversity Conservation	Bukit Batu Eco-Community	Low Carbon Village Felda Taib Andak	<i>Nafas Baru</i> Pasir Gudang - Clean and Healthy City	
	Action 1 Integrated Green Transportation (GT)								\mathbf{O}		\bigcirc
Green	Action 2 Green Industry (GI)										
) Economy	Action 3 Low Carbon Urban Governance (LG)										
omy	Action 4 Green Building and Construction (GB)										
	Action 5 Green Energy System and Renewable Energy (GE)										
Green Commun	Action 6 Low Carbon Lifestyle (LL)								\mathbf{O}	\bigcirc	\bigcirc
Green Community	Action 7 Community Engagement and Consensus Building (CC)										
	Action 8 Walkable, Safe and Livable City Design (WC)										
Green	Action 9 Smart Urban Growth (SG)										
Environment	Action 10 Green and Blue Infrastructure and Rural Resources (RR)									0	
nmen	Action 11 Sustainable Waste Management (WM)								\mathbf{O}		\bigcirc
	Action 12 Clean Air Environment (CA)								0	0	\bigcirc


Rationales & Guide to Reading Timeline Diagram

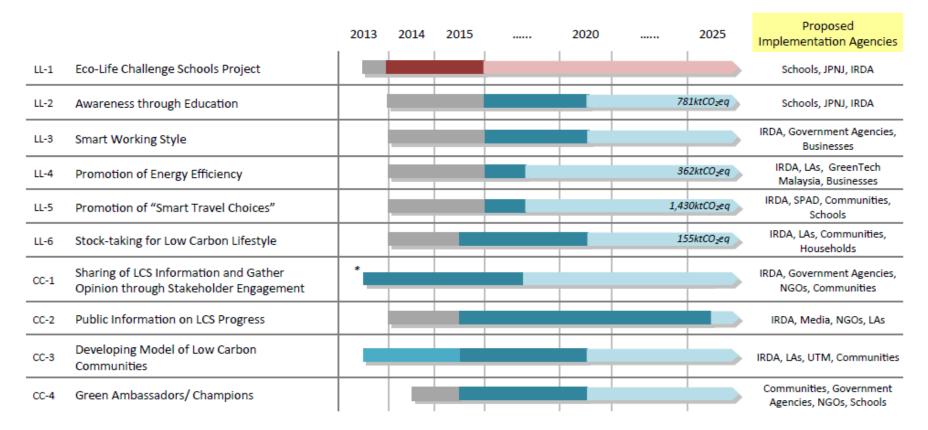
A good roadmap is characterized by well justified phasing of projects. Priority projects would be those that have relatively low barriers but high GHG reduction impacts (see diagram). Implementation barriers include cost, human capital, institution and legislation framework, societies readiness (stakeholder acceptance) and technology availability.

02 A Roadmap towards Low Carbon Iskandar Malaysia Green Transportation (GT)

Action 1 "Green Transportation" (GT) and Mobility Management System (GT-1), IRDA's Implementation Plan are covered.

02 A Roadmap towards Low Carbon Iskandar Malaysia Green Industry and Low Carbon Urban Governance (GI, GL)

		2013	2014	2015	 2020		2025	Proposed Implementation Agencies
GI-1	Green Economy Guidelines for IM							IRDA, LAs
GI-2	Green Portal for Iskandar Malaysia							IRDA, LAs, MITI, KeTTHa
GI-3	IM as Global Hub for Green Industry				1			IRDA, KeTTHa, NRE, MIDA
GI-4	Decarbonising Industries					1,0	94ktCQ2eq	IRDA, Industries, FMM
GI-5	Green Employment in Existing Industries							IRDA, UTM, Industries, FMM
GI-6	Human Capital Development in Green Industry							IRDA, LAs
LG-1	Development Planning for Low Carbon Iskandar Malaysia							IRDA, LAs, JPBD(NJ)
LG-2	Planning Control Process, Procedures and Mechanism for Materializing LCS in Iskandar Malaysia		-					IRDA, LAs, JPBD(NJ)
LG-3	Development of Necessary Human Capital for Operation							IRDA, LAs, JPBD(NJ), UTM
LG-4	Iskandar Malaysia LCS Monitoring , Reporting and Publication System							IRDA, LAs

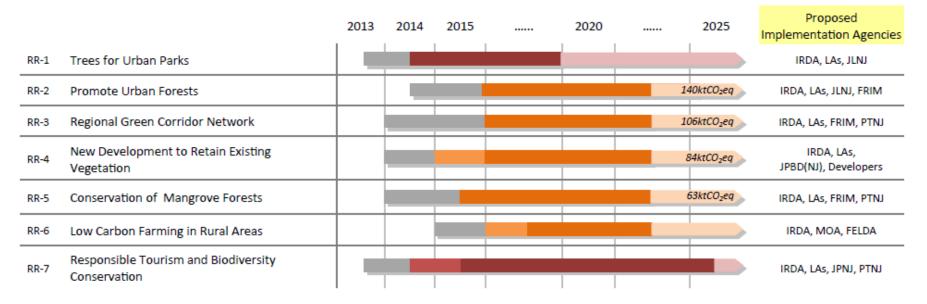

Action 2 "Green Industry" (GI) and Action 3 "Low Carbon Urban Governance" (LG), IRDA's Implementation Plans; Green Economy Guidelines for IM (GI-1) and Green Portal for Iskandar Malaysia (GI-2) are covered.

O2 A Roadmap towards Low Carbon Iskandar Malaysia Green Building and Energy System (GB, GE)

		2013	2014	2015	 2020		2025	Proposed Implementation Agencies
GB-1	GAIA (Green Accord Initiative Award)							IRDA, LAs, UTM
GB-2	Implementation of Financing Scheme for Green Buildings							IRDA, GreenTech Malaysia
GB-3	Diffusion of Green Building Design and Technology					1	84ktCO₂eq	IRDA, PAM, IEM, UTM
GB-4	Diffusion of Green Construction					1,0	19ktCO2eq	IRDA, LAs, CIDB
GB-5	Energy Efficiency Improvement of Existing Buildings (Retrofitting)			-				IRDA, LAs, PAM, IEM
GE-1	Standardization of Energy Efficiency Standards and Labeling System							UTM, IRDA, SIRIM, GreenTech Malaysia
GE-2	Running Energy Conservation Center in Iskandar Malaysia							IRDA
GE-3	Implementation of Financing Scheme for Renewable/Alternative Energy							IRDA, GreenTech Malaysia, SEDA
GE-4	Promotion of Renewable/ Alternative Energy with Advanced Energy System					3.	54ktCO₂eq	IRDA, SEDA, UTM, Enterprises

This section describes implementation of Action 4 "Green Building and Construction" (GB) and Action 5 "Green Energy System and Renewa-ble Energy" (GE) with IRDA's implementation plan of GAIA (Green Accord Initiative Award) (GB-1).

02 A Roadmap towards Low Carbon Iskandar Malaysia Green Community (LL, CC)


This section describes implementation of Action 6 "Low Carbon Lifestyle" (LL) and Action 7 "Community Engagement and Consensus Building" (CC) with IRDA's Implementation Plan, Eco-Life Challenge Schools Project (LL-1).

02 A Roadmap towards Low Carbon Iskandar Malaysia Green Urban Design (WC, SG)

		2013	2014	2015	 2020	 2025	Proposed Implementation Agencies
WC-1	Designing Walkable City Centers and Neighborhoods					132ktCO2eq	IRDA, LAs, Developers
WC-2	Designing the Cyclist-friendly City					66ktCO2eq	IRDA, LAs, Developers
WC-3	Designing the Safe City (from crime)						IRDA, LAs, Police
WC-4	Designing Civilised and Livable Streets through Traffic Calming					66ktCO₂eq	IRDA, LAs, JKR
SG-1	Promote Polycentric Growth Pattern in IM					563ktCO₂eq	IRDA, LAs, JPBD(NJ)
SG-2	Promote Compact Urban Development					563ktCOzeq	IRDA, LAs, JPBD(NJ), Developers
SG-3	Promote Transit Supportive Land Use Planning					88ktCO₂eq	IRDA, LAs, JPBD(NJ)
SG-4	Development of the 'Smart Digital City'						IRDA, MSC Cyberport Johor, Businesses

Action 8 "Walkable, Safe and Livable City Design" (WC) and Action 9 "Smart Urban Growth" (SG) are covered.

02 A Roadmap towards Low Carbon Iskandar Malaysia Green and Blue Infrastructure & Responsible Tourism (WC, SG)

This section describes implementation of Action 10 "Green and Blue Infrastructure and Rural Resources" (RR) with IRDA's Implementation Plans; Trees for Urban Parks (RR-1) and Responsible Tourism and Biodiversity Conservation (RR-7).

02 A Roadmap towards Low Carbon Iskandar Malaysia Sustainable Waste Management (WM)

This section covers Action 11 "Sustainable Waste Management" (WM) that includes five sub-actions which cover waste from five different sectors - municipal (household and commercial), agriculture, industry, waste water, and construction and demolition.

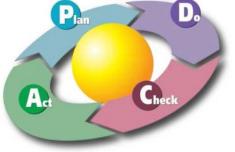
02 A Roadmap towards Low Carbon Iskandar Malaysia Clean Air Environment (CA)

Action 12 "Clean Air Environment" (CA) is covered. The main contents are establishment of comprehensive air quality management system, installation of air quality monitoring station and pollutant emission control device in the industry sector. Green passenger and freight transportation are also considered. Cross-border cooperation to avoid regional haze pollution from open biomass burning is tightened.

Launching of the Iskandar Malaysia: Actions for a Low Carbon Future

Malaysia Launching: 06 Nov 2013 at Parliament Global launching: 15 November 2013, COP19 Warsaw Poland

05 Conclusion The Way Forward


Quantification from LCS modeling assist **better understanding** on impact of proposed actions, sub actions and programs.

Good **baseline study, consensus building and low carbon blueprint plan** will help to develop an **integrated climate resilient , Low carbon framework** for a city or region.

Green cities or Local carbon cities need to have a LOW CARBON SOCIETIES mindset/ behavior and Joint effort between different professions (Planners, architect, engineer and related environmental profession)

Important to have a Asian (eg IGES & AIM workshop) and International platform for research collaboration between researchers in LCS as well as capacity building opportunities.

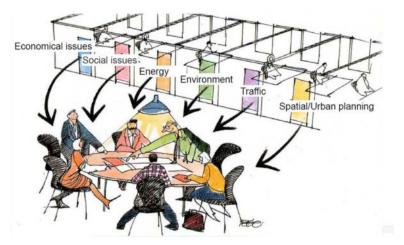
Explore PDCA cycle for LCS implementation

03 The Way Forward Future Plan

As the present roadmap is a preliminary work, most of them are in need for further studies to complete full report of LCS Roadmap. (E.g. specific programmes, timeline, GHG emission reduction by program, implementation agencies, stakeholders, etc.)

Detail works by every research group for the full report LCS roadmap:

i. Scenario integration and Land Use Planning


_ Green Industry (GI), Low Carbon Urban Governance (LG), Green Building (GB), Green Urban Design (WC, SG)

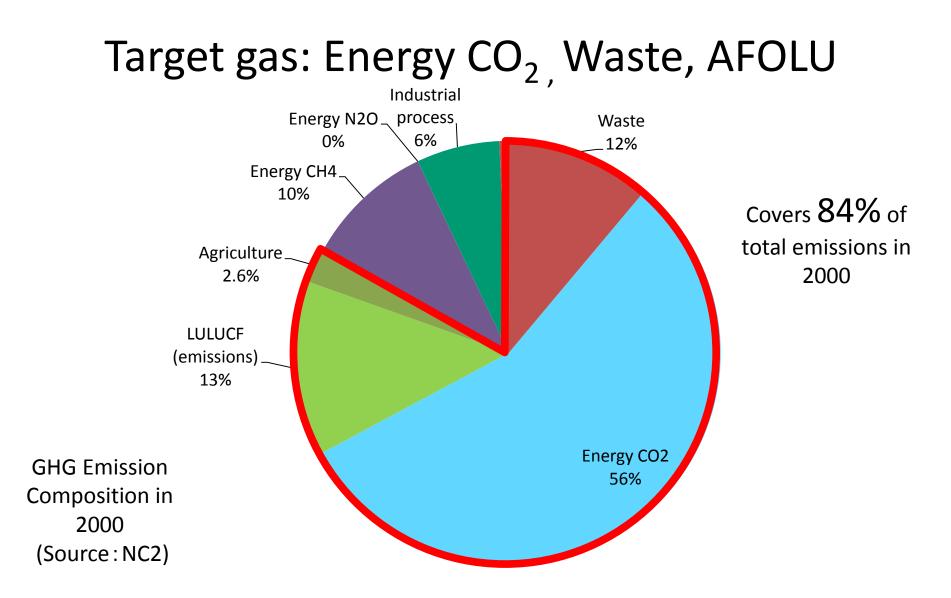
ii. Consensus Building and Education _Green Community (LL, CC)

iii. Energy System Green Energy System (GE)

iv. Solid Waste Management _Sustainable Waste Management (WM)

v. Air Quality and Transportation _Green Transportation (GT), Clean Air Environment (CA)

Developing Malaysia LCS vision in 2020 and 2030 for Energy, Waste and AFOLU sectors


Unversiti Teknologi Malaysia Ho Chin Siong

Kyoto University, Japan

Yuzuru MATSUOKA Kei GOMI Janice Simson Yuri HAYASHI Phubalan Karunakaran National Institute for Environmental Studies, Japan Mikiko KAINUMA Junichi FUJINO Shuichi ASHINA Tomoko HASEGAWA Maiko SUDA Miho KAMEI

Main Findings are based on quantitative estimation colls - Extended Snapshot Tool (ExSS) and AFOLU model.

- Major assumption and data are based on Malaysia Second National Communication (NC2) 2011 submitted to the UNFCCC
- Two mitigation scenarios were developed: CM1 and CM2
- Research Findings adopted Low-carbon society (LCS) scenario in 2020 and supported with more quantitative socio-economic scenarios and mitigation option details.

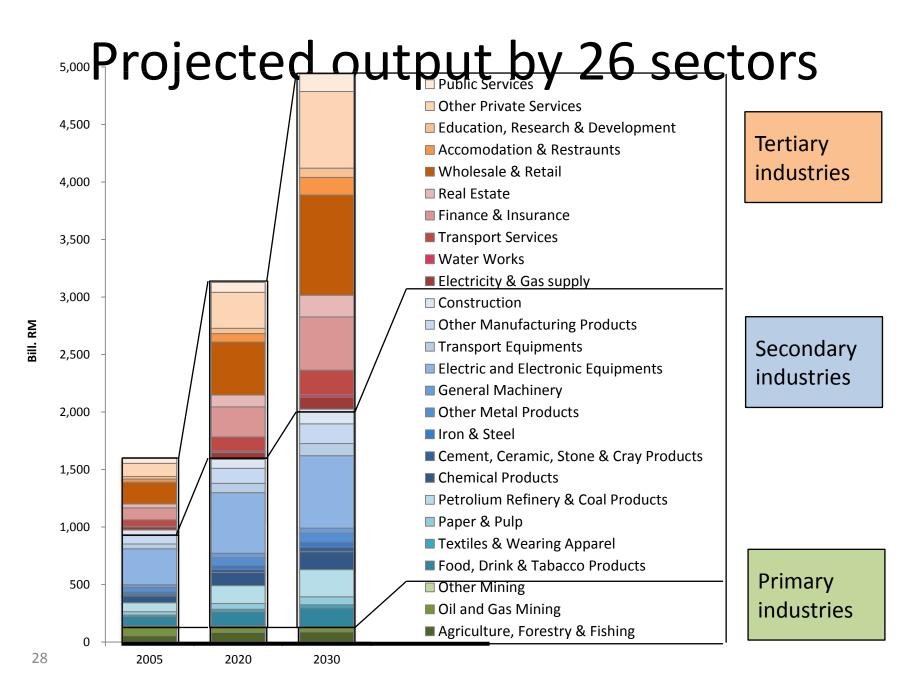
CONTENT

Part I: Socio-economic scenario in 2020 and 2030

Part II: Energy

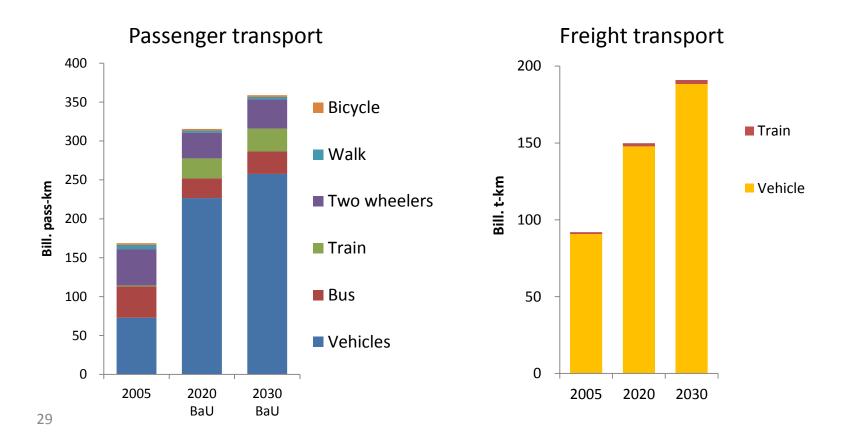
Part III: Waste

Part IV: Agriculture, forestry and other land use


Part V: Integration

Part I: Socio-economic scenario

- **Procedure** Data collection & estimation in the base year (2005) 1.
- 2. Construct future socio-economic scenario in 2020 based on the New Economic Model (NEM) and NC2 using ExSS
- 3. Construct future socio-economic scenario in 2030 based on extrapolation of the scenario in 2020 and UN population projections using ExSS


Results of main variables

	2005	2020	2030	2020 /2005	2030 /2005	
Population	26.1	32.8	37.3	1.3	1.4	Million
Household	5.8	8.2	9.3	1.4	1.6	Million
GDP	509	996	1,601	2.0	3.1	Bill. RM
Per capita GDP	19.5	30.4	43.0	1.6	2.2	1000.RM
Gross output	1,604	3,135	4,929	2.0	3.1	Bill. RM
Primary	55	84	97	1.5	1.8	
Secondary	920	1,507	2,175	1.6	2.4	
Tertiary	629	1,544	2,657	2.5	4.2	
Passenger transport	169	315	359	1.9	2.1	Bill. pass-km
Freight transport	92	150	214	1.6	2.3	Bill. t-km

Both modal share and transport volume of private vehicle increase in 2020

• Freight transport volume increases proportionally with growth of secondary industries

Part II: Energy demand and CO₂ emissions

1. Data collection of energy demand and supply

- To project 2020BaU (Business as usual) energy demand and CO₂ emissions based on assumptions in NC2
- 3. To develop 2 mitigation scenarios

CM1: With mitigation options outlined in NC2 and additional options

CM2 : With more intensive introduction of mitigation options than CM2 which achieves -40% target in 2020

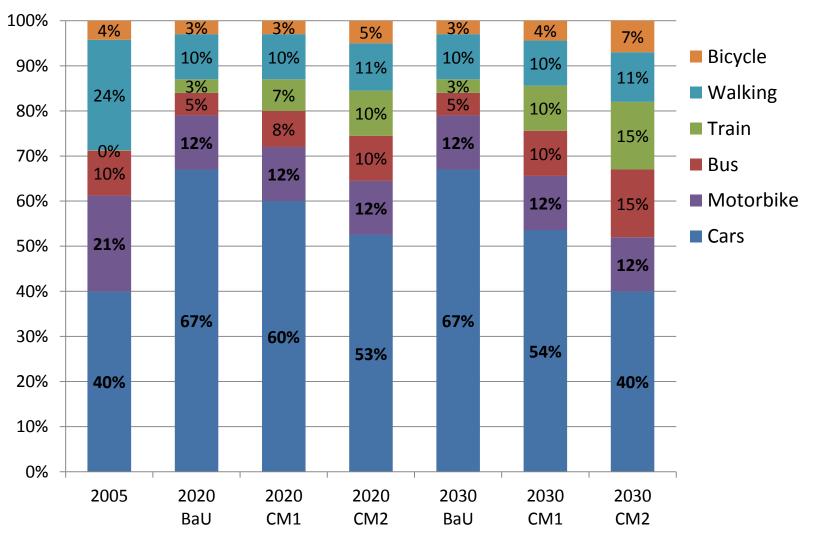
4. To develop 2030BaU and 2030CM1, 2030CM2 scenarios as extension of 2020 scenarios

Mitigation (1)

	CM1	CM2
2020	40%	60%
2030	75%	85%

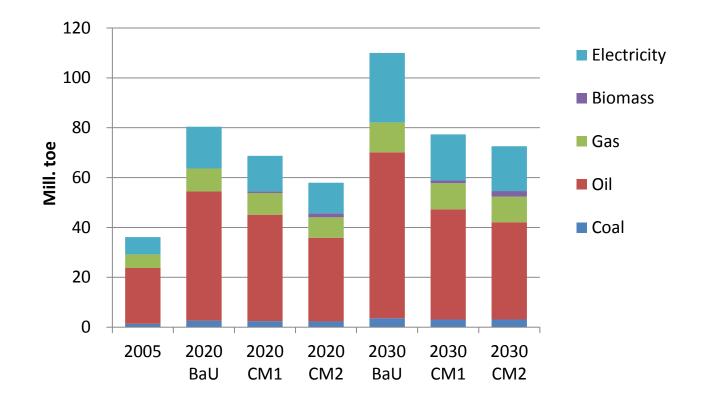
Conversion efficiency of power plant

		Coal	Oil	Gas	Hydro power	Solar & mini hydro	Biomass and other renewable s	Nuclear
2005		24%	69%	39%	34%			
2020	BaU	32%	39%	39%	34%			
	CM1	36%	39%	43%	34%	100%	36%	
	CM2	39%	39%	47%	34%	100%	39%	
2030	BaU	32%	39%	39%	34%			
	CM1	39%	39%	47%	34%	100%	39%	100%
	CM2	42%	39%	51%	34%	100%	39%	100%

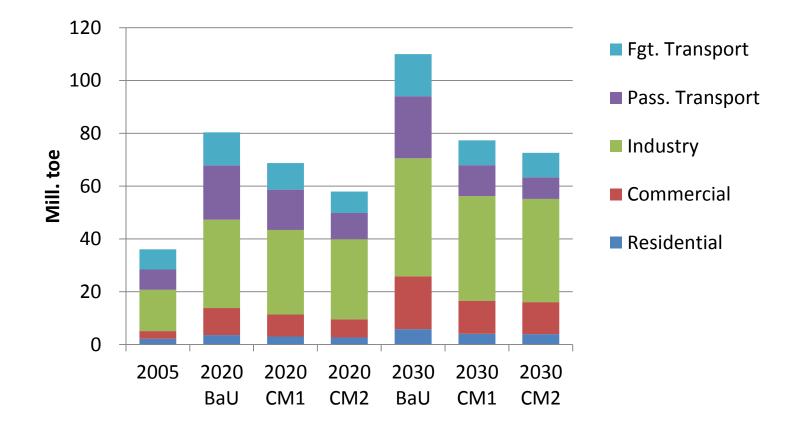

Renewable energy of power supply in CNI scenarios

		Biomass	Biogas	Mini- hydro	Solar PV	Solid Waste	Total
CM1	2020	800	240	490	190	360	2080
	2030	1600	480	980	380	720	4160
CM2	2020	1600	480	980	380	720	4160
	2030	4000	1200	2450	950	1800	10400

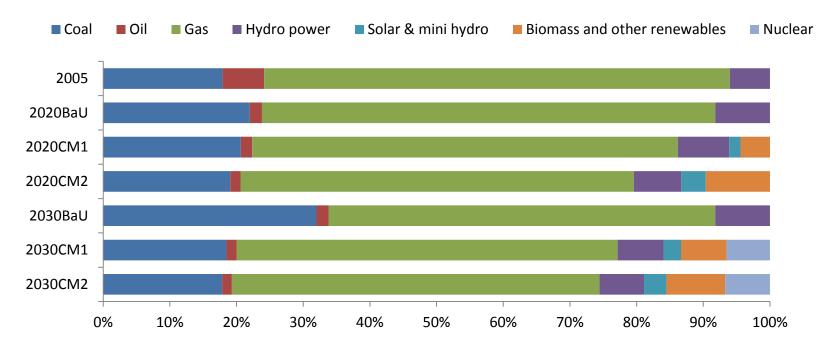
Share of bio diesel in transport fuel


	CM1	CM2
2020	2.0%	5.9%
2030	3.1%	7.8%

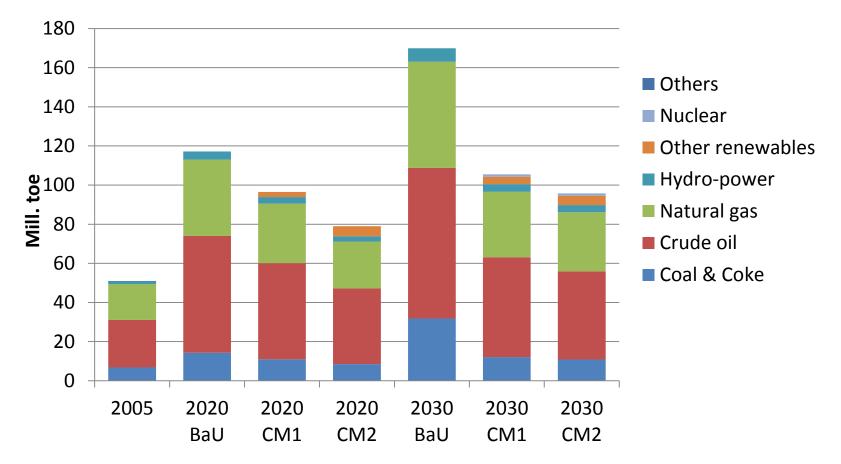
Mitigation options (3) Modal share of passenger transport


Projected final energy demand by fuels Final energy demand by fuel in 2020BaU was fit to that of NC2

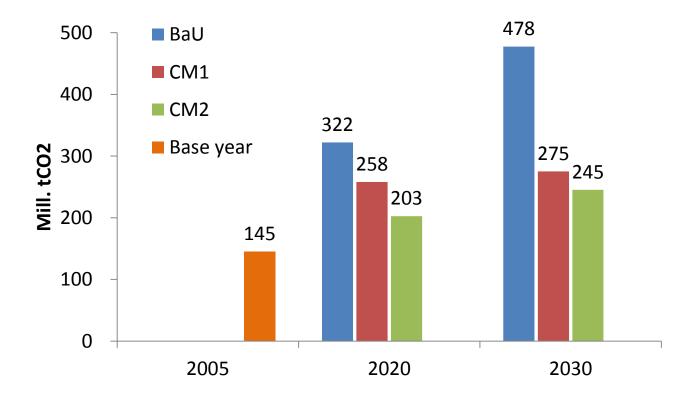
- Oil has the largest share in all scenarios.
- In 2030BaU scenario, final energy demand reaches 100 million toe.


Projected final energy demand by sectors Share of each sector is fit to NC2 in 2020BaU scenario

• The largest energy consumer is industry sector


Projected energy mix of power supply Power supply mix is projected to fit primary supply of each

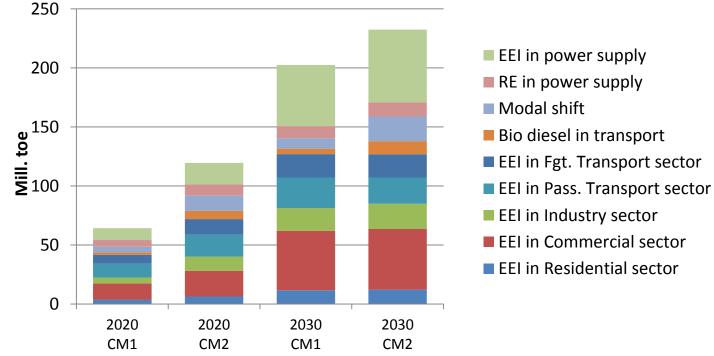
- type of energy in **NC2**
- In 2030CM scenario, share of renewable energies reaches nearly 20%.


Projected primary energy supply In 2030BaU, total primary energy supply increased more than 3 times of 2005

• Most of the fuels are increased proportionally

In 2020BaU, CO₂ emission doubled from 2005, and tripled in 2030BaU.

- In CM1 scenario, it was reduced by 20% and 42% from BaU scenarios.
- In CM2 scenario, it was reduced by 42% and 49% from BaU scenarios.



۲

Contribution of mitigation options Both in 2020CM and 2030CM, energy efficiency improvement of

commercial sector has the largest share.

 In 2030CM, energy efficiency improvement in power supply is second largest.

Emission reduction from BaU scenarios

EEI: energy efficiency improvement

۲

Part III: Waste

- **Procedure** Data collection of waste generation and parameters in 1970-1. 2005
- Projecting waste generation in BaU scenario and GHG 2. emissions in 2005-2030
- Developing two countermeasure scenario (CM1 and CM2) 3. with mitigation options outlined in NC2

Scope

- Solid waste (SW) management
 - CH4 emission from landfill
 - CO2 emission from incineration of fossil carbon

- Waste water
 - CH4 emission from palm oil mill effluent (POME)

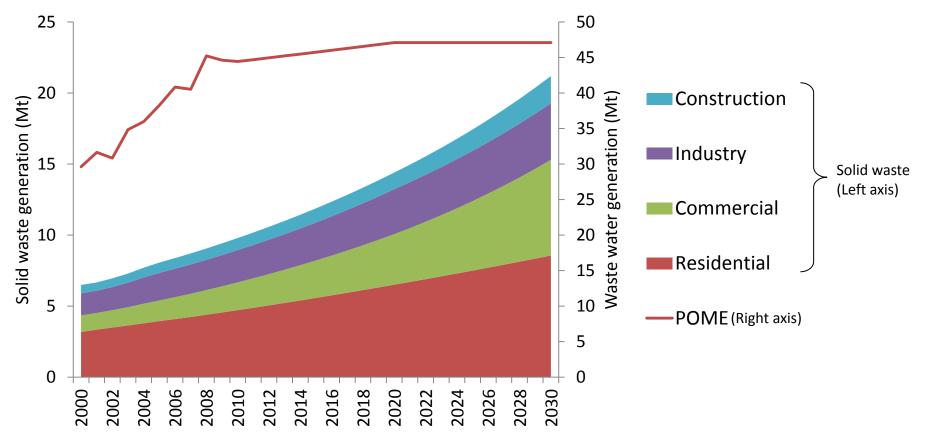
Assumptions of SW generation

 Since NC2 give waste generation in several years* from 2000 to 2020, it was extended for 1970 to 2030.

*2001,2005,2007,2020

- 1970 to 1999: Based on reported value of MSW generation and composition in Malaysia.
- 2021 to 2030:
 - Municipal solid waste of residential sector: Extrapolation of per capita waste generation using linear regression from 2000 to 2010
 - Municipal solid waste of commercial sector and Industrial waste: Assuming same per output generation and

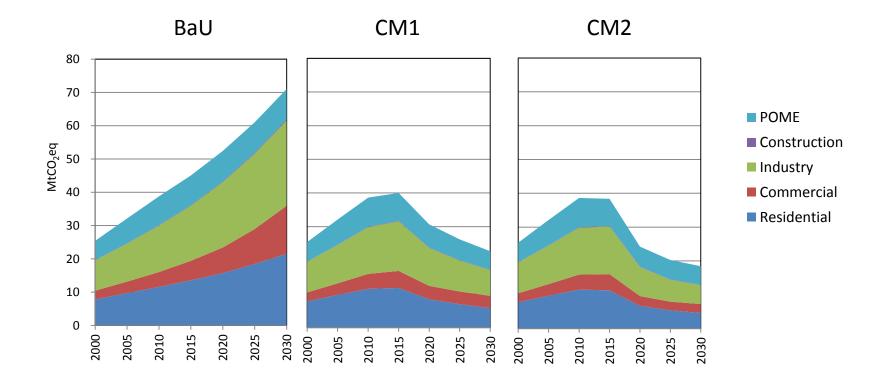
Scenarios and Mitigation options BaU: Without measures to reduce GHG emission.


- **CM1**: Scenario 2 in NC2. With mitigation options
- CM2: More intensive implementation of mitigation options than CM1

		Baseline	CM1	CM2
Recycling	2020	5.5%	40%	55%
	2030	5.5%	50%	60%
Incineration	2020	0.0%	10%	15%
	2030	0.0%	20%	20%
Composting	2020	2.2%	15%	15%
	2030	2.2%	25%	25%
CH4 recovery	2020	0%	25%	35%
	2030	0%	40%	40%

۲

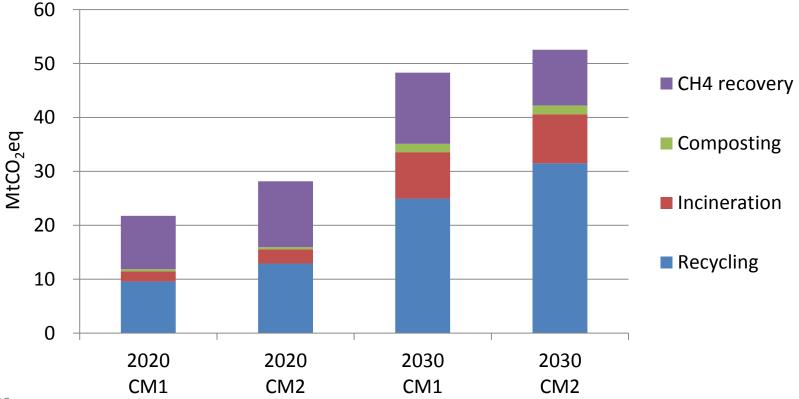
Projected waste generation SW generation is increased by 25% in 2020 and 39% in



 ${\color{black}\bullet}$

Projected GHG emission increased more than 2 times in 2020 and 2.8 times in

- In CM1, emission was reduced by 41% (2020) and 68% (2030) from BaU
- In CM2, emission was reduced by 54% (2020) and 74% (2030) from BaU



۲

2030

Contribution of mitigation options

• In S2, recycling is the largest and CH4 recovery is less than S1 because of less CH4 generation resulted from other mitigation options.

۲

Part IV: Agriculture, forestry and other land use

Framework

- Country: Malaysia
- Sectors:
 - Agriculture
 - Forestry and Other Land-Use (LULUCF)
- Year: 2000-2030
 - Agriculture; 5 year step, FOLU; 1 year step
- Target GHGs: CO₂, CH₄, N₂O
- Case:
 - BaU: no countermeasure
 - CM: reduction measures applied under several carbon taxes
- Activities: Crops, Livestock Animal and Land-Use change excluding fire and disturbance of land.

(Future activity data is from literature. So ExSS-AFOLU is not applied in this preliminary application)

Input & output of AFOLU model

AFOLU Emission model

Output

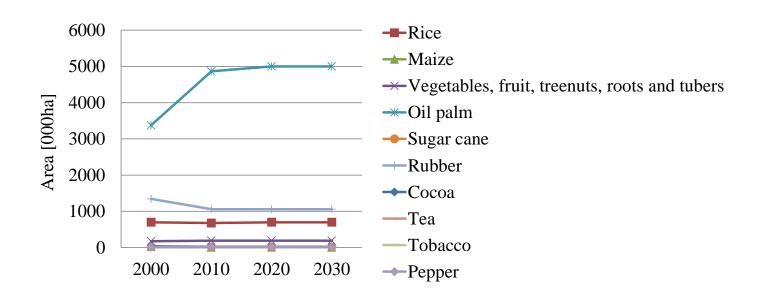
List of Countermeasure

Input

Characteristics of Countermeasure Scenario of;

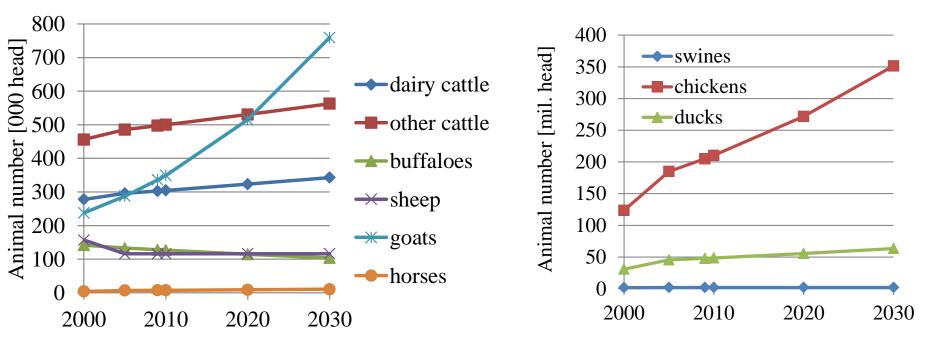
- Crop production
- Number of Livestock animals
- Land-use change
- Fertilizer input
- Wood production etc.
- Price of Commodity and Energy
- Yield of crops and Carcass weight of animals
- Production system

Policy;

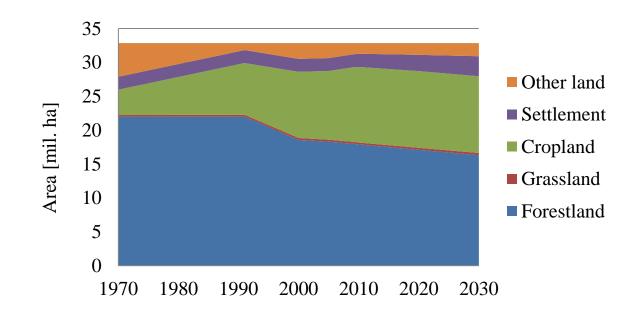

- GHG emission tax rate
- Energy tax rate
- Subsidy

Emission/ Mitigation Types of countermeasures

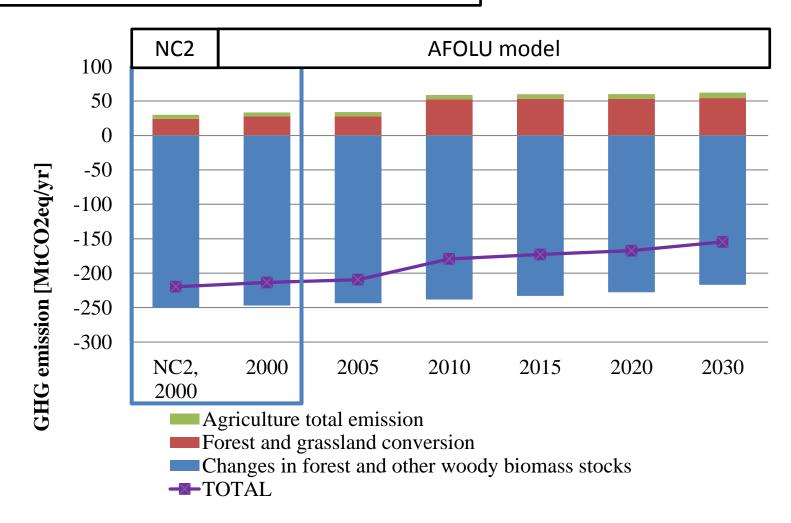
- Cost
- Reduction effect
- Life time/ project period
- Diffusion ratio
- Energy consumption and recovery
- Feeding system of livestock
- Manure management system
- Share ratio of irrigation and rain fed area


Scenario: Harvested area of crops

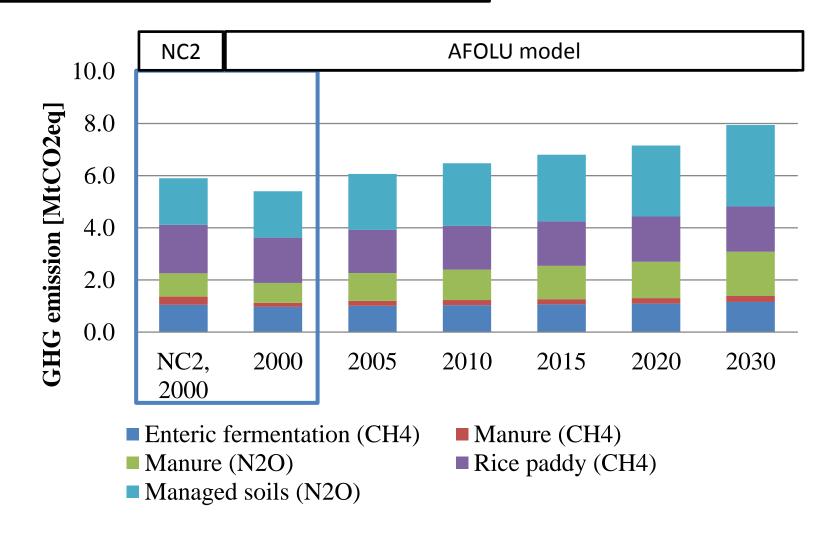
- Total croplands: 9.8 mil. ha in 2000 \rightarrow 11.3 mil.ha in 2030
- Yield: 2.5 times from 2000 to 2030 (Hasegawa, 2011)
- Oil palm area is increasing up to 5 mil. ha by 2020 (Wicke et al., 2011).
- Other crops: Extrapolation from 2005 to 2030 using growth ratio from 2005 to 2009
- Fertilizer per area is set based on yield
 - Yield may change depending on Fertilizer input

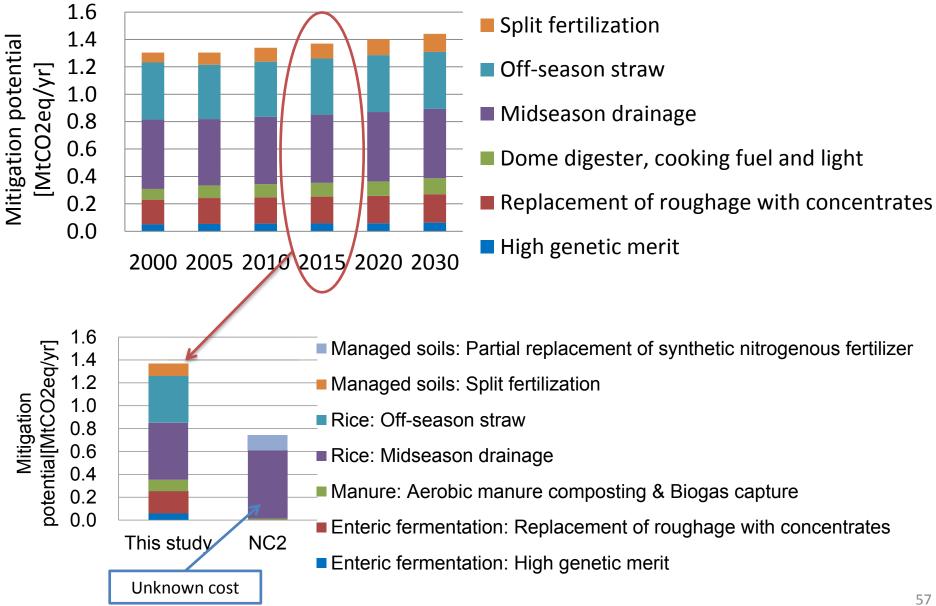

Scenario: livestock animals

- Base year: NC2
- 2009 (the latest data): FAOSTAT
- 2010 to 2030: increase at ratios in 2005 to 2009

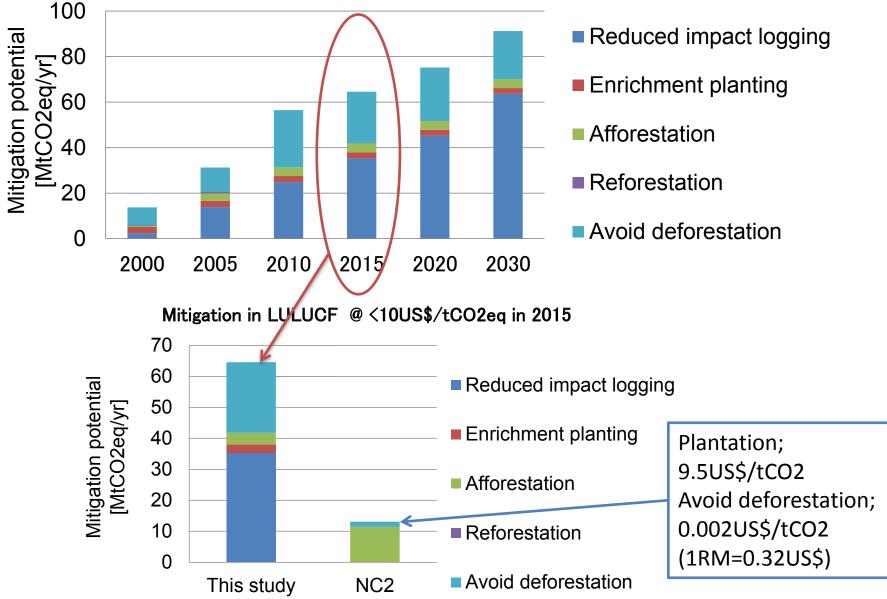

Scenario: land use and land use change

- Forestland: NC2 for 2000, 2005, 2009, 2010 and 2020
- Grassland: FAOSTAT(2011)
- Cropland is total harvested area of crops
- A ratio of *settlements* to total country area:
 - 5.8% in 2008 → 7.3% in 2020 (NPP2)
- Otherland : Total Land area others


Total GHG emissions in BaU in AFOLU sectors



GHG emissions in Agriculture in BaU case


Our results is similar with NC2 estimates

Mitigations in agriculture @<10USD/tCO2eq

Mitigations in LULUCF @<10USD/tCO2eq

Findings from AFOLU model

AFOLU model was applied in Malaysia and estimates GHG emissions and mitigations in AFOLU sectors.

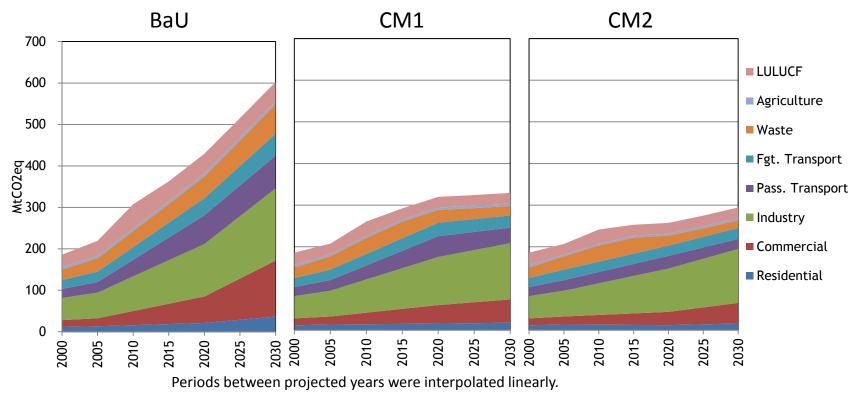
Sectors	BaU en	nissions	Mitigation Potential	
[MtCO2eq/yr]	2020	2030	2020	2030
Agriculture	7.2	7.9	1.4	1.4
LULUCF	-174	-163	75	91
Total	-167	-155	77	93

- Countermeasures which have high mitigation potential;
 - Midseason drainage for Agriculture.
 - Reduce impact logging for LULUCF.

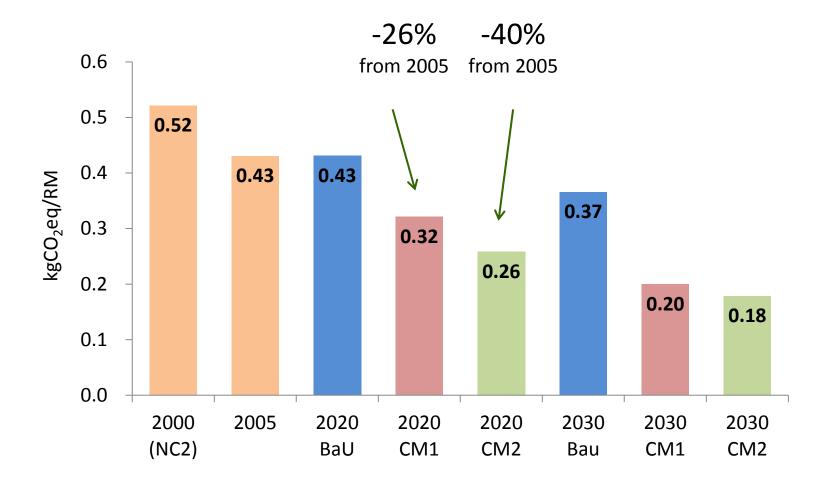
* Malaysia NC2, Chap.3, p38, Fig3.4 & Table3.5 BaU case

Part V: Integration

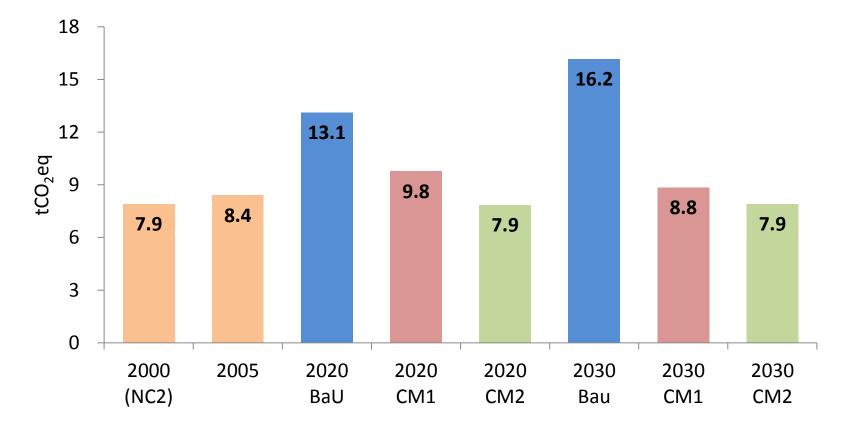
Integration Combining all three sectors: Energy, Waste and AFOLU


• For AFOLU sectors, @<10USD/tCO2eq case was applied both for CM1 and CM2 scenarios.

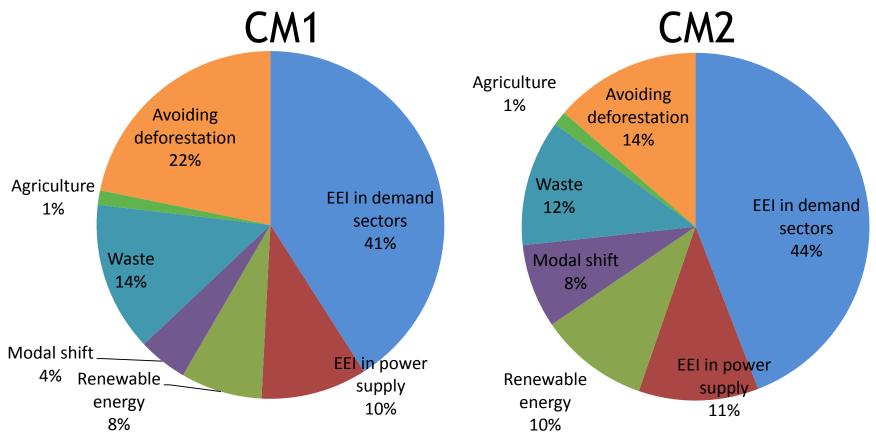
Summary of mitigation options


	2020		2030	
	CM1	CM2	CM1	CM2
Diffusion of energy efficient devices	40%	60%	75%	85%
EEI rate from BaU of thermal power plants	10%	20%	20%	30%
Modal shift from passenger cars	10%	22%	20%	40%
Share of bio diesel in transport	2%	6%	3%	8%
Capacity of RE power plant (MW)	2080	4160	4160	10400
Recycling rate of solid waste	40%	55%	50%	60%
Incineration rate of solid waste	10%	15%	20%	20%
Recovery rate of CH4 from waste management	25%	35%	40%	40%
Mitigations in AFOLU sectors*	<10USD/ktCO2eq			

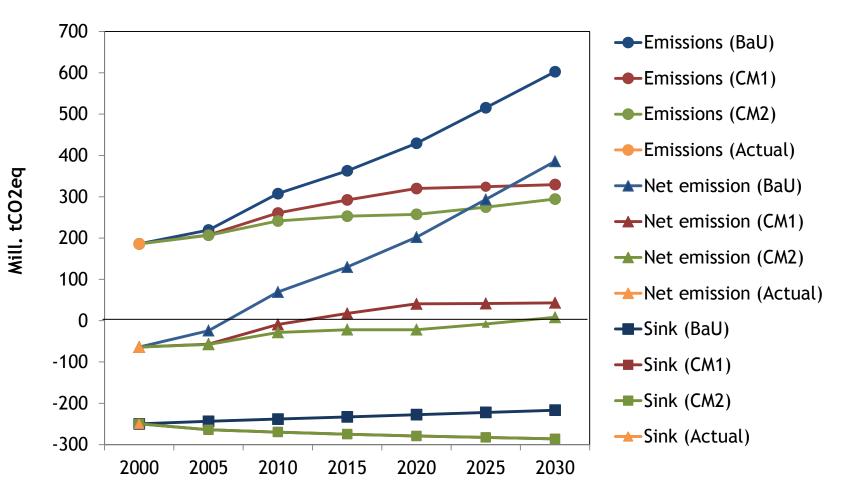
GHG emissions (Energy, Waste and AFOLU) Energy has the largest contribution in both scenarios in all years.


- In BaU scenario, GHG emission increased by 96% (2020) and 175% (2030) from 2005
- In CM1 scenario, it was reduced by 26% (2020) and 45% (2030) from BaU, in CM2, 40% (2020) and 51% (2030).

Emission intensity (GHG emission per GDP)



Per capita GHG emission



Contribution to emission reduction in 2020 In order to achieve -40% target in 2020, more contribution of

EEI, renewable energy and modal shift is required.

Emissions, sink, and net emissions

67

- **Conclusion** Using ExSS and AIM/AFOLU model, Malaysia LCS scenarios in 2020 and 2030 were projected.
- Target GHGs are: CO₂ from energy use, CO₂ and CH₄ from waste management, CO₂, CH₄ and N2O in AFOLU sectors
- In 2020BaU scenario, GHG emission was doubled from 2005.
- In 2020CM1 scenario, GHG emission intensity was reduced by 26% from 2005.
- In 2020CM2 scenario, GHG emission intensity was reduced by 40% • from 2005.
- In order to achieve -40% target of emission reduction, more intensive implementation is needed especially in energy sector.

Thank you for your attention!

Thank You Terima Kasih 谢谢 धन्यवाद ありがとう

