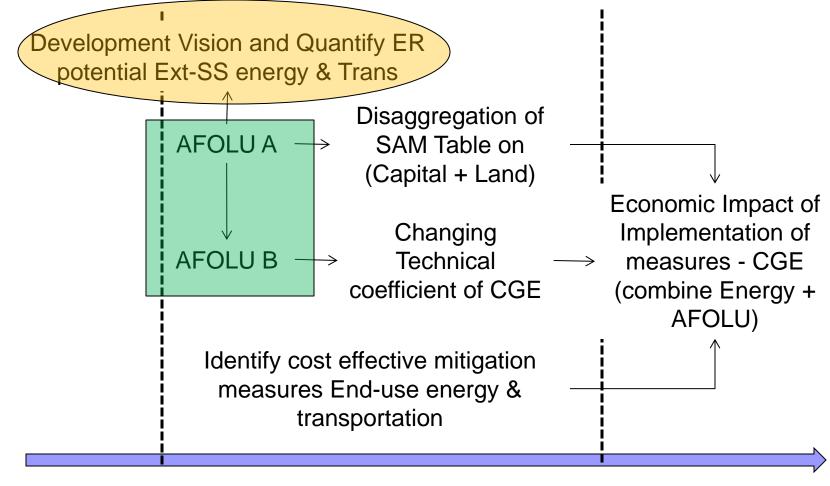
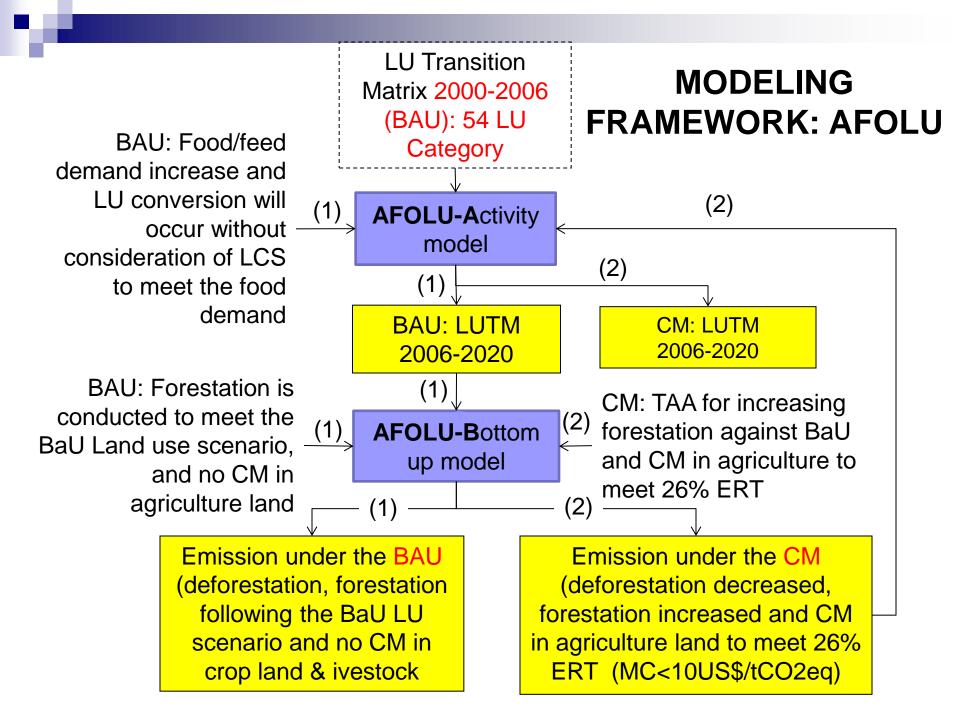

Designing Strategies toward Low Carbon Development: INDONESIA

Presented by *Rizaldi Boer, Retno Gelang Dewi and Ucok Siagian* The 19th AIM International Workshop, December 13-14, 2013, Ohyama Memorial Hall, NIES, Tsukuba, Japan Introduction: Indonesian historical and projection of GHG emission under BAU scenario by sector (2000-2020)

Government of Indonesia has targeted to reduce 26% of its emission from BAU by 2020


 Presidential Regulation 61/2011-National Action Plan for GHG Mitigation



Research Questions

- How can 26% emission reduction be achieved with minimum cost?
- What are the energy type (energy mix) should be for meeting X% emission reduction and land use scenarios should be followed including the measures to meet Y % emission reduction targets?
- How much is the cost?
- What will be the impact of reducing emission X% from energy and Y % AFOLU on Indonesia's GDP and food security etc?
- What co-benefits will be gained from the implementation of mitigation actions in the long term?

Research Framework: Designing Strategies Toward LCD

Assumption in BaU scenario

Assumption	Source of assumption
1.01% per year growth	NC2
Same with 2005	
Same with 2005	
Rice: same with 2005 The other commodities: increase by 0.5% per year	Rice: Boer et al. (2013) The other commodities: -
Same with 2005	-
Rice in Jawa: 1.5% per year Rice in ROI: 1.3% per year Oil palm: 0.5% per year The other crops: 2% per year	BPS (Bureau of Statistic of Indonesia)
Palm oil: 5% per year growth The others: 1% per year growth	Past trend from 1990 to 2011 (FAOSTAT)
Same with 2005	-
Same conversion pattern with the matrix from 2000 to 2006	Base on Directorate General of Forest Planology , Ministry of Forstry
606,000 ha per year	Past trend from 2000 to 2006
	1.01% per year growth Same with 2005 Same with 2005 Rice: same with 2005 The other commodities: increase by 0.5% per year Same with 2005 Rice in Jawa: 1.5% per year Rice in ROI: 1.3% per year Oil palm: 0.5% per year The other crops: 2% per year Palm oil: 5% per year growth The others: 1% per year growth Same with 2005 Same conversion pattern with the matrix from 2000 to 2006

Mitigation Measures for Agriculture

- Reducing Emission from Rice Cultivation
 - Replace Urea with Amonium Sulphate
 - Off-season incorporation of rice –straw
 - Convert from fertilization tillage into no-tillage
- Improvement of soil management
 - □ High efficiency of fertilizer application
 - Replace inorganic fertilizers with manure and residues (organic farming)
 - Use of slow-release type of fertilizers
- Livestock and Enteric Fermentation
 - High genetic merit
 - Use of more concentrate in livestock feed (replacement of roughage with concentrates)
- Manure management
 - Daily spread of manure
 - Anaerobic digestion
 - Dome digester(Biogas) for energy
 - Aerobic decomposition

CMs and their connection with RAN-GRK options: Agriculture

			High	Replacem	Daily	An	aerobic	Dome	Aerobic	Replace
			genetic	ent of	spread					
			merit	roughage	manur		0	and biogas	•	ammonium
			morie	with	maria			is used as		sulfate
				concentra				energy		
	Code	RAN-GRK Options ^a		tes				0110185		
	RAN1	Improvement and maintenance of irrigation								
_		Inetwork								
	RAN2	Optimization of the land use								
	RAN3	Application of plant farming technologies								
	RAN4	Utilization of organic fertilization of organic								
		fertilizers and bio-pesticides			x	(Х
	RAN5	Development of plantation on non-								
		forest/abondoned/degraded other use area								
	RAN6	Utilization of manure/urine of cattle and								
		agricultural wastes for biogas						Х		
\uparrow	RAN7	Improved livestock productivity	Х	Х						
New	RAN8	Improved livestock manure management					Х		Х	
\downarrow	RAN9	Improved fertilizer efficiency								
			Midseason	Off-seas	on C	onvert	High	Replac	e Switchir	ng Use of
			drainage in	incorporation fertilizatio of rice straw nal tillage		fertilizatio effici		ncy fertilize		slow-
			rice paddy			fertilize	r with	winter t	o release	
					to no-till		applicat	tion manure	e spring	type
								and	cultivars	s fertilizers
	Code	RAN-GRK Options ^a						residue	;	
	RAN1	Improvement and maintenance of irrigation								
		network	x							
	RAN2	Optimization of the land use								
	RAN3	Application of plant farming technologies				Х			X	X
	RAN4	Utilization of organic fertilization of organic						x		
		fertilizers and bio-pesticides		X				^		
	RAN5	Development of plantation on non-								
		forest/abondoned/degraded other use area		_						
	RAN6	Utilization of manure/urine of cattle and								
٨		agricultural wastes for biogas								
. T	RAN7	Improved livestock productivity								
New	RAN8	Improved livestock manure management								
v ∩	RAN9	Improved fertilizer efficiency					X			
9	\frown				1	- I I -	I ' -			

Green: RAN-GRK options, Orange: options not included in RAN-GRK.

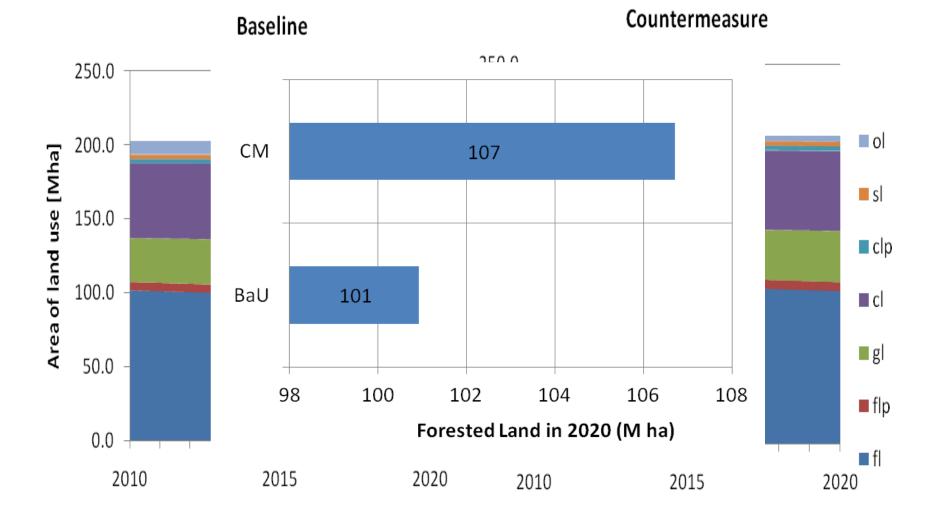
Mitigation cost of the Countermeasures for Agriculture

Emission source	Countermeasures	Capital input	O&M cost	Reduction	Reduction	Imprementation
		[US\$/ha,	[US\$/ha,	ratio of CH4	ratio of N2O	degree in 2020
		US\$/head]	US\$/head]	[%/ha,	[%/ha,	[%]
				%/head]	%/head]	
Livestock enteric fermentation	High genetic merit	0	20	25	-	20
	Replacement of roughage with concentrates	0	-3.1	35	-	20
Manure	Daily spread of manure	0	0.0	99.5	-	25
management	Anaerobic Digestion	210	2.2	50	-	25
	Dome digester and biogas is used as energy	0	-11.8	50	-	25
	Aerobic decomposition	0	17.2	90	-	25
Rice cultivation	Replace urea with ammonium sulfate		20	10	-	25
	Midseason drainage in rice paddy	0	0	37	-	25
	Off-season incorporation of rice straw	0	20	19	-	25
	Convert fertilizational tillage to no-till	0		2	-	25
Managed soils	High efficiency fertilizer application	0	2.2	-	30	30
	Replace fertilizer with manure and residue	0	20	-	0.0	25
	Use of slow-release type fertilizers	0	700	-	35	10

Mitigation Measures for Forest & Other Land Uses

- The use of low carbon stock lands (sink-enhancement):
 - Development of Agroforestry (AGF)
 - Timber plantation (Short and long-rotation; PLR, PSR)
 - Reforestation (Slow and Fast growing species; RSS, RFS)
- Improvement of management of production forest:
 - Reduced Impact Logging (RIL), Enhanced Natural Regeneration (ENR)
- Reduction of deforestation
 - □ Forest protection (FP)
- Peatland Management:
 - Improvement of water management (WM)
 - Improvement of land and fire management (PFF)

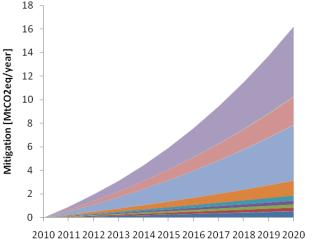
CMs and their connection with RAN-GRK option: land-use change


		n-short	n-long	ation- fast growing	slow growing		Impact	Enhance d natural regenera tio		manage	Peatland rehabilita tion	-
		PSR	PLR	species RFS	species							405
	AN-GRK Options ^a	POR	PLR	RFS	RSS	FP	RIL	ENR	PFF	WM	PR	AGF
	stablish of a Forest Management rganization (KPH)	Х	х	х	х	х	x	x	x		x	
	anning for forest area utilization and uisiness improvement	Х	x	х	х		x	x				
	evelopment of utilization nvironmental services					х		x	x			
RAN4 Ina	auguration of forest areas	Х										
ma	nprovement, rehabilitanance of arsh reclamation network (including eat lands)									x	x	x
	anagement of peat lands for a ustainable agriculture									x	x	x
ma de pla	evelopment of agricultural land anagement in abandoned and egraded peat land areas to support antation, animal rasing and priculature sub-sectors	X		x						x	x	x
RAN8 Im re	nplementation of a forest and land habilitation and forest reclamation in ne prioritized watersheds (DAS)	x		x						x	x	x
	evelopment of social foresty	Х	Х	Х	Х							Х
RAN10 Fo	prest fire control								Х			
RAN11 Fo	prest investigation and protection					Х						
es	evelopment of conservation and ssential ecosystem areas and anagement of protected forests					x						
RAN13 En bu	nhancement of plantation forest usinesses (HTR)	Х	х									
RAN14 RI							Х					
RAN15 Re	educed shifting cultivation					Х						Х

¹Green: RAN-GRK options, Orange: options not included in RAN-GRK.

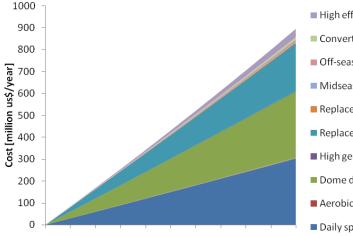
Mitigation cost of the Countermeasures for Forest and Other Land Use

							Maximum annual			
							available			
		Cost	Benefit				area	Lifetime	Lifetime	Technical
		[US\$/ha/	[US\$/ha/	Mitigation	effect of (CO2, CH4,	[1000	of cost	of effect	area
Countermeasures	Code	yr]	yr]	N2O	[tCO2/ha	/yr]	ha/year]	[year]	[year]	[1000 ha]
Plantation-short rotation	PSR	14.4	0	14			395	10	10	3953
Plantation-long rotation	PLR	5.4	0	19			113	35	35	3953
Reforestation-fast growing species	RFS	6.0	0	30.9			439	12	12	5270
Reforestation-slow growing species	RSS	2.6	0	30.8			151	35	35	5270
Forest Protection	FP	6.5	0	202			1710	10	1	17100
Reduced Impact Logging	RIL	0.1	0	5			3339	12	12	40062
Enhanced natural regeneratio	ENR	0.5	0	7			2542	15	15	38130
Prevention of forest fire	PFF	11.1	0	316	29	12	270	10	1	2700
Water management in peatland	WM	7.3	0	86			400	10	10	4000
Peatland rehabilitation	PR	33.3	0	6			200	15	15	3000
Agro-forestry	AGF	13.5	0	43			527	10	10	5270


Land Use Change Scenario BAU & CM

Mitigation Potential and Cost Agriculture

18


Mitigation potential

High efficiency fertilizer application

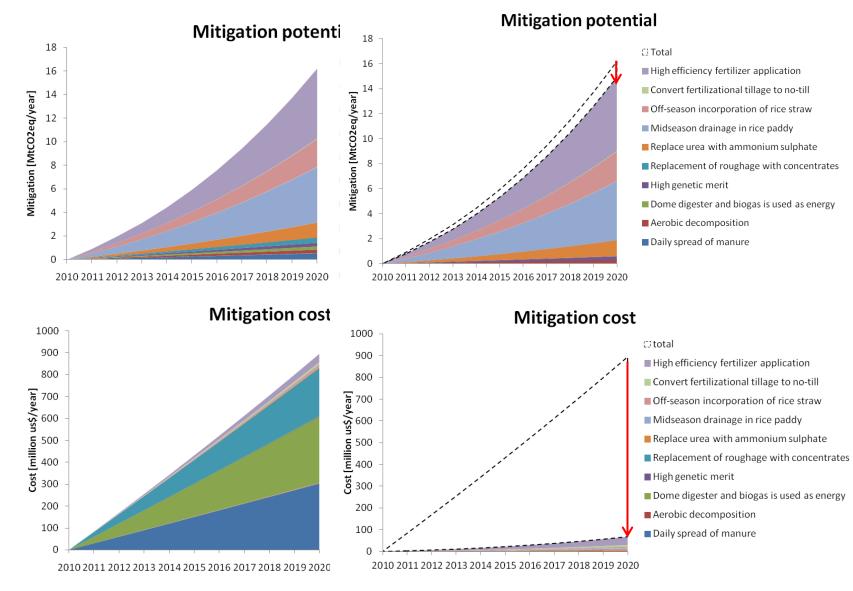
- Convert fertilizational tillage to no-till
- Off-season incorporation of rice straw
- Midseason drainage in rice paddy
- Replace urea with ammonium sulphate
- Replacement of roughage with concentrates
- High genetic merit
- Dome digester and biogas is used as energy
- Aerobic decomposition
- Daily spread of manure

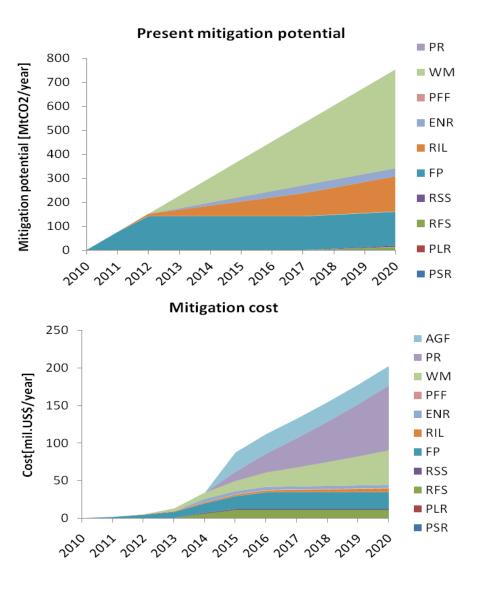
Mitigation cost

- High efficiency fertilizer application
- Convert fertilizational tillage to no-till
- Off-season incorporation of rice straw
- Midseason drainage in rice paddy
- Replace urea with ammonium sulphate
- Replacement of roughage with concentrates
- High genetic merit
- Dome digester and biogas is used as energy
- Aerobic decomposition
- Daily spread of manure

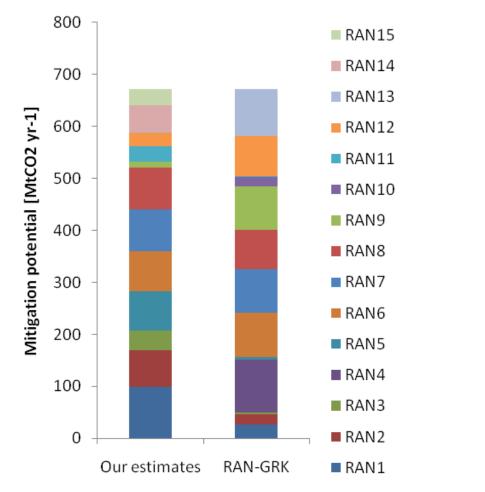
16 MtCO2eq/year in 2020 75 MtCO2eq in 10 year

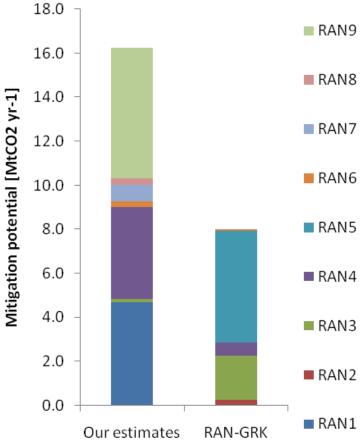
RAN9


Highest potential emission reduction are from the use of high efficiency fertilizers, intermittent irrigation, incorporation of rice straw to soils, and replacement of urea with ammonium sulphate, but the highest cost are from the biogas plant, daily spread of manure, and replacement of roughage with concentrates. By reducing mitigation cost up to 93%, this sector can still reduce the emission by 90%


2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Mitigation Potential and Cost Agriculture




Mitigation Potential and Cost FOLU

672 MtCO2eq/year in 2020 3.7 GtCO2eq in 10 year RAN15 800 RAN14 Mitigation potential [MtCO2/year] RAN13 700 RAN12 600 RAN11 50 Highest potential emission reduction are ¹⁰ from improvement of water management in peatland, forest 5 ²⁵ protection, reduced impact logging and Cost[mil.US\$/year] enhanced natural 15 10 regeneration 5. RAN4 RAN3 0 RAN2 2026 2021 RAN1

Comparison to RAN-GRK

Epilogue

Refinement of the Analysis

- Updating the mitigation cost data, inclusion of transaction costs in calculating mitigation cost of key CMs
- Refining assumptions (e.g. yield, yield growth, population growth, allocation of CMs in each RAN categories)
- Developing more low carbon development scenarios taking into account change in development policies (e.g. energy mix policies, production target on palm oil, rice production target – extensification and intensification etc.)