Making

Advanced

System

Improvements on local government's greenhouse gas emission prediction methodology in Korea

- Focused on residential sector, commercial and public sector and transport sector -

Jinhan Park¹, Dongkun Lee², Yongwon Mo¹, Hyomin Kim¹, Chan Park³, Youdeog Hong⁴, Jongik Yoo⁵

¹Graduate School of Seoul National University, Korea, ²College of Agriculture and Life Science and Seoul National University, Korea, ³National Institute for Environmental Studies, Japan, ⁴National Institute of Environmental Research, Korea, ⁵Ecosense, Korea

Introduction

The need for climate change mitigation has been increasing at the international level. Therefore, Korea government set up greenhouse gas reduction target by 30% ratio of BAU until 2020 by green growth plan. As following, local governments are trying to make mitigation plan and greenhouse gas inventory. However, local governments do not have specific emission factor and methodology for themselves. Thus, this study proposed greenhouse gas emission prediction methods and emission factors for local

- Advanced local government GHG emission prediction
- Suggest advanced reduction measures
- Analysis of effect of reduction measures
- Constructed reduction

Building a GHG management system

governments which reflect each local government's characteristics.

roadmap and scenarios

Methods

Heating		65.0%	57.4%	55.7%	_	
Hot-water		35.0%	30.9% 30.0		_	
Cooking		- 11.7% 14		14.3%	_	
Lighting		_	_	_	7.6%	
Electronic instrument		_	_	_	92.4%	
Total		100%	100%	100%	100%	
• Predicti	on	equation o	of energy co	onsumptior	า	
		Prediction equation				
Heat		population(TY) X average floor area(TY) X				
Lighting	(e	nergy consumption(SY) / pop(SY) X floor are(SY))				
Hot-water		population(TY) X households number(TY) X				
Cooking	(6	(energy consumption(SY) / pop(SY) X households(SY))				
Electronic instrument	t population(TY) X distribution rate(TY) X (energy consumption(SY) / pop(SY) X distribution rate (SY)) * TV: target year SV: standard year					
 Prediction of emission factor 						
 Using the possible local government data Making the regression curve of distribution rate of electronic instrument (TV, refrigerator, kimchi fridge, 						

- washing machine, fan, air conditioner, computer, laptop) by using past data
- For example about TV

	Division		Function type	Equation of regression (x:target year, y: distribution rate)	R ²
Ĩ		Motro	exponential	$y = 1.3676e^{0.0119x}$	0.2373
	ΤV	politan city	linear	y = 0.0165x + 1.3719	0.2360
			log	$y = 0.0627 \ln(x) + 1.3653$	0.2349
			polynomial	$y = -0.0049x^2 + 0.0657x + 1.2817$	0.3439

 Classification of fuel type of each car: gasoline, diesel, LPG, CNG(bus) etc.

• Prediction of emission factor

- Using the possible local government data
- Number of registered car: direct use of local government data
- ① Prediction equation of target year energy consumption

 VKT = number of registered car X distance of car
 Emission = energy consumption X emission coefficient (number of registered car (TY) X distance of car(TY)) / (fuel efficiency of each fuel)

* TY: target year

② Prediction equation of average distance per day

average distance per day = $\frac{\text{tota distance}}{\text{total drive day}} = \frac{\text{dis}_2 - \text{dis}_1}{365 \times (y_2 - y_1) + \frac{365}{12} \times (m_2 - m_1) + (d_2 - d_1)}$

moving distance(TY)=moving distance(SY) X (1+x)

③ Prediction equation of the number of registered cars

number of car(TY) = pop(TY) x (number of car(SY)/pop(SY)) - Case of sedan, taxi, bus, RV

number of car(TY) = GDP(TY) x (number of car(SY)/GDP(SY)) - Case of truck and special cars

④ Using data of fuel efficiency prediction

Fuel efficiency	2008	2012	2015	2020	2030
LPG (km/l)	7.65	8.06	8.64	10.10	13. <mark>5</mark> 8
Gasoline (_{km} / _l)	10.84	11.43	12.25	14.33	19.26
Diesel sedan (<i>km/l</i>)	10.88	11.47	12.29	14.38	19.32
Diesel heavy (<i>km/l</i>)	2.63	2.77	2.97	3.47	4.67

Commercia	I city: 3	/ cities	

Residential city: 27 cities

Agriculture and fishery city: 73 cities

• Emission policy classification and analysis (example)

Cate	gory	Sub-category	Detailed feature		
High	using high	Supply and apparation of	Supply of high efficiency		
efficiency	efficiency	high officiance instrument			
instrument	instrument	mgn eniciency instrument	electronic instrument		
Green building	Cross building	Supply and expansion of	Change the insulation window		
Green city	Green Dunding	green home			

• Effect analysis of emission policy

- Selection emission policy and definition of effect analysis terms by using expert Delphi methods
- Residential: 3 policies, Commercial & Public: 3 policies, Common: 6 polices, transport: 9 polices

• Results of effect analysis (example)

ca	tegory	sub-	sub-category		Detail measure	
high efficie	ency instrument	supply and deficiency	supply and distribute of high efficiency instrument		distribute of high efficiency instrument	
Life 5~6 Yea		Years	ars supply time			present
		purchasing cost				
	initial	refrigerator		1,400 won/L		00 won/L
necessary	cost	wash machine		- 27,895 won/kg		
expenses		cooker		3,175 won/person		
	maintenance	energy consumption				
	cost	_				
		refrigerator		69.6 kg/yr · unit		
	emission unit	wash machine		0.8 kg/yr · unit		
effect		cooker		15.2 kg/yr · unit		
	emission	emission unit(kg/yr·unit) >			< numt	per of households
	equation	× distributi			rate(%)
		refrigerator (650L)		76.48 kg/million won ·yr		/million won ·yr
GHG emiss	sion per unit	wash machine(10kg)		_		_
		cooker (10 person)		478.74 kg/million won•yr		y/million won•yr

Making the regression curve of fuel efficiency

Conclusion

In this study, we analyzed prediction elements for national greenhouse gas emission. Then, we suggested local government's greenhouse gas emission prediction in accordance with the characteristics of the each local government in three sector such as residential, commercial & public and transportation sector. Also we were able to predict greenhouse gas emission which has considered government's characteristics. As a result of this study, local governments could propose potential greenhouse gas emission through the comparison with the national greenhouse gas emission.

This research was done by a support of Ministry of Environment of Korea Ecological Innovation Technology Development Project 2013 (Project No. 416-111-014)

