19th AIM International Workshop (December 14, 2012)

Regional Model

Feasibility of 80% reduction in Japan

Ken Oshiro

Mizuho Information & Research Institute Inc.

and Tokyo Institute of Technology

Go Hibino

Mizuho Information & Research Institute Inc.

Background

- Japan's long-term target is reducing GHG emission by 80%.
- Now no nuclear power plant is operating, and availability of nuclear power in 2050 is uncertain.
- This study estimates a possibility to achieve 80% reduction target without nuclear power, by using regional model in Japan.

Region classification

• 10 regions: 10 electricity power company's distribution areas

Framework of the model

- The model structure is based on AIM/Enduse [Japan]
- Greenhouse gases
 - energy-related CO2, non-energy-related CO2, CH4, N2O, HFCs, PFCs, SF6
- Time horizon: 2010-2050

Power generation

- Region classification :10 regions
- Period of time:
 - 3 seasons (summer, winter, intermediate)
 - weekdays and holidays
 - Electricity supply must meet demand every 3 hours

<Example of model output>

Renewable energy potential by region

- Hokkaido and Tohoku region have large potential
- Upper limit of potential by region is reflected in the model

Electricity interconnection between regions

Interconnection capacity is much lower compared to electricity demand

 It is one of the major barrier of renewable energy generation in Hokkaido and Tohoku region

Energy demand by region

- Energy demand varies greatly according to regional climate condition
- It is also reflected in the model

<Household energy consumption (2009)>

Source: Agency for Natural Resources and Energy, Japan

Technology

- Following technologies have regional own parameter
 - Energy efficiency of residential / commercial insulation
 - COP of heat pump technology

CCS

- Power sector, iron and steel and cement process (Biomass energy CCS is not included)
- Storage volume is limited to 200 Mt-CO2/year
- Reinforcement of electricity interconnection capacity
 - Initial cost: 4,000 USD/kW

Scenarios

Scenario		Carbon constraint	Nuclear scenario	Reinforcing electricity interconnection
Baseline		0 USD/t-CO2	Operate no more than 40 years*1	Not allowed
80% reduction scenario	Nuclear remain	80% reduction by 2050	Current capacity*2 remain by 2050	Not allowed
	Nuclear phase out	80% reduction by 2050	Operate no more than 40 years	Not allowed
	Reinforcing interconnection	80% reduction by 2050	Operate no more than 40 years	Allowed

^{*1} Complying with the plan of the former political administration. It means all nuclear power phase out by 2050.

^{*2} Except Fukushima nuclear power plant.

^{*3} In 80% reduction scenario, carbon price is increasing linearly from 2010 to 2050

Result: GHG emission by scenario

- Baseline scenario: 26% reduction compared to 1990
- Other scenarios: 80% reduction

GHG emission by sector

- About a half of GHG emission in 2050 is emitted from industry sector
- Residential and commercial sector achieve nearly zero emission in 2050

Carbon price

- Without nuclear power, carbon price to reduce GHG by 80% is about 600 USD/t-CO2 (increasing 25% from Nuclear remain scenario)
- In Reinforcing interconnection scenario, carbon price is reduced by 9%

<Carbon price to reduce GHG by 80% by scenario in 2050>

Electricity interconnection capacity

 Tohoku-Tokyo line and Hokkaido-Tohoku line are reinforced in reinforcing interconnection scenario

Power generation from renewable

 In reinforcing interconnection scenario, power generation from renewable in Hokkaido and Tohoku aria increases by 20%~45%

Primary energy supply

In 80% reduction scenario, renewable energy occupies over 40% of total supply

Final energy consumption

 In 80% reduction scenario, energy consumption in 2050 is almost reduced by half compared to 2010

Power generation

- In baseline scenario, share of coal increases in place of nuclear power.
- In 80% reduction scenario, share of LNG with CCS increases.
 And renewable exceed 40% of total generation

Power generation (detail)

 In 80% reduction scenario, PV increases significantly so pumped hydro plant operates not in the daytime but in the evening

Power generation in the summer of 2050

Power generation by region in 2010

Power generation by region in 2030

Generation from LNG and renewable is growing rapidly

Power generation by region in 2050

 Generation from renewable is growing more, and the rest is occupied by LNG equipped with CCS.

Final energy consumption by region in 2010

Final energy consumption by region in 2030

Natural gas increases mainly in place of oil

Final energy consumption by region in 2050

Electricity and renewable is growing

Summary

- without nuclear power, carbon price to achieve 80% reduction by 2050 is very high
- To reduce economic impact, not only energy efficiency or renewable technology but system technology such as reinforcing electricity interconnection is important
- If reinforcing electricity interconnection is available, Hokkaido and Tohoku region will take a important role because of their rich renewable energy potential

Thank you for your attention!