20<sup>th</sup> AIM International Workshop National Institute for Environmental Studies Tsukuba, Japan 23-24 January 2015

### Analyses of Some Low Carbon Scenarios: Case of Nepal

#### Ram M. Shrestha

Asian Institute of Technology and Management Lalitpur, Nepal

# **Presentation Outline**

- Background
- Objective
- Scenario Description
- Effects of Carbon Tax
- Conclusion

# **Population Growth**

#### **Population (millions)**



- Three growth scenario projected by UN Population Division (UNPD)
- Population will increase by 0.15, 0.36 and 0.58 times during 2010-2050 in low, medium and high variant growth rate.

## National Economic and Demographic Trend



- Share of urban population will increase from 17% in 2010 to 36% in 2050.
- GDP growth: 4% p.a. (2010-2015)
  5.56% p.a. (2015-2050)
- GDP/capita to increase by 5 folds



# Objectives

- To analyze the effects of carbon tax on energy mix and GHG emission reduction
- To identify cost effective low carbon options in different carbon tax scenarios

## **Scenario Description**

- One business as usual scenario (base case) and three carbon tax scenarios
- Carbon tax scenarios include
  - 3 AME carbon tax paths (starting from 2017)
    - 10 USD/tCO2e @ 2020 (CT10) increasing at 5% p.a.
    - 30 USD/tCO2e @ 2020 (CT30) increasing at 5% p.a.
    - 50 USD/tCO2e @ 2020 (CT50) increasing at 5% p.a.

## **Primary Energy Supply**

Base case (Mtoe) CT10 case (Mtoe) Cumulative TPES increased by 1.23 times Cumulative TPES increased by 1.28 times ■ Traditional Biomass ■ Coal ■ Petroleum ■ LPG ■ Hydro ■ Other Renewables ■ Traditional Biomass ■ Coal ■ Petroleum ■ LPG ■ Hydro ■ Other Renewables CT50 case (Mtoe) CT30 case (Mtoe) Cumulative TPES increased by 1.29 times Cumulative TPES increased by 1.31 times 

# Primary Energy Supply

- In the base case,
- TPES increases by 1.23 times in 2050
- Traditional biomass decreases in 2050 by 30% compared to 2010.
- Coal, petroleum, LPG, hydro and other renewables increases by 3, 8.7,8.1,15.9 and 7.4 times in 2050 compared to 2010.
- In CT10,
- TPES increases by 1.28 times in 2050
- Biomass and hydropower use in 2050 increases by 12% and 1% compared to the base case
- No significant change in other renewables, coal and petroleum
- LPG use decreases by 11%

# Primary Energy Supply

- In CT30,
- TPES increases by 1.31 times in 2050
- In 2050, Biomass use increases by 18% compared to the base case
- Similarly, hydro and other renewables use increases by 6% and 3% respectively compared to the base case
- There is not significant change in coal and petroleum. LPG use decreases by 29%
- Biofuel has a share of less than 1% in Primary Energy in 2050
- In CT50
- TPES increases by 1.29 times in 2050
- In 2050, biomass use increases by 18% compared to the base case
- Similarly, hydropower and other renewables use increases by 24% and 3% respectively
- Coal and petroleum decreases by 46% and 2% respectively. LPG use decreases by 71%
- Biofuel has a share of 2.1% in Primary Energy in 2050

## **GHG Emission in Different Scenarios**

**GHG** emissions



- Cumulative GHG reduction in CT10, CT30 and CT50 are 1%, 4% and 9.5% respectively
- In 2030, GHG reduction in CT30 and CT50 are 2% and 2.3% respectively.
- In 2050, GHG reduction in CT10, CT30 and CT50 are 1%, 6% and 20.5% respectively 10

# Sectoral Shares in Fossil Fuel Consumption in Base case



- Fossil fuel consumption increases by 7.2 times in 2050.
- Transport sector has the largest share in total fossil fuel consumption

# Sectoral GHG Emissions in Base Case 2010 2050



- GHG emissions will increase by 6 fold.
- Transport Sector would be the largest emitter followed by industrial, residential, agriculture and commercial and sectors during 2010-2050.
- Share of the transport in GHG emission increases from 36.4% in 2010 to 63.3% in 2050.

#### Sectoral GHG Emissions in Base Case and CT Cases



- GHG emissions in 2050 would increase by 6.1, 6.0, 5.6 and 4.6 times in base case, CT10, CT30 and CT50 from the level of 2010.
- In 2050, GHG emissions decrease by 1%, 6% and 20.5% in CT10, CT30 and CT50.<sup>13</sup>

### Cumulative GHG Emission in CT cases and Sectoral Shares in GHG Reduction



- Cumulative emission decreases by 1%, 4% and 9.4% in CT10, CT30 and CT50 cases.
- The share of transport, residential, commercial and industrial sector in cumulative reduction in CT30 is 5%, 58%, 26% and 11%.
- The share of transport, residential, commercial and industrial sector in cumulative reduction in CT50 is 18%, 27%, 23% and 32%.

### GHG Emission Reduction by Sector in CT cases in 2050



- GHG Emission reduction in 2050 is achieved mainly from residential sector in CT10 and CT30.
- In CT50, GHG emission reduction in 2050 from industrial, residential, transport and commercial are 37%, 27%, 21% and 15% respectively.

# Effect of Carbon Tax on Cumulative GHG Emission during 2010-2050 in Different Sector



#### Cumulative GHG emissions in industry (MtCO2e)



### Cumulative GHG emissions in commercial sector (MtCO2e)



#### Cumulative GHG emission in transport sector (MtCO2e)



#### Effect of Carbon Tax on Fuel Mix in Residential Sector

Cumulative LPG consumption during 2010-2050 (Mtoe)



Cumulative **biomass** consumption during 2010-2050 (Mtoe)



Cumulative **electricity** consumption during 2010-2050 (Mtoe)





- Cumulative LPG use decreases by 11%, 46% and 51% in CT10, CT30 and CT50
- Cumulative electricity use increases by 2%, 6% and 7% in CT10, CT30 and CT50
- Cumulative biomass use increases by 1%, 9% and 9% in CT10, CT30 and CT50

# Effect of Carbon Tax on Fuel mix and Energy Efficiency in Commercial Sector

Cumulative LPG consumption during 2010-2050 (Mtoe)



Cumulative **biomass** consumption during 2010-2050 (Mtoe)



### Cumulative **electricity** consumption during 2010-2050 (Mtoe)



- Cumulative LPG use decreases by 11%, 30% and 66% in corresponding scenarios.
- Cumulative electricity use increases by 7%, 22% and 50% in CT10, CT30 and CT50.
- Cumulative biomass use increases by 14%, 15% and 18% in CT10, CT30 and CT50
- Share of LPG in cooking and water heating decreases in CT cases.
- Efficient space cooling devices (efficient fan) cost effective after 2040 in all carbon tax scenarios.

### Deployment of Low Carbon Transport Options

| Scenario  | 203                  | 30 20             | 35 20            | 40 20            | )45 2050 |  |  |  |
|-----------|----------------------|-------------------|------------------|------------------|----------|--|--|--|
| Base case |                      |                   |                  |                  |          |  |  |  |
|           | Fossil Fuel Vehicles |                   |                  |                  |          |  |  |  |
|           |                      |                   |                  |                  |          |  |  |  |
| СТ10      |                      |                   |                  |                  |          |  |  |  |
|           | Fossil Fuel Vehicles |                   |                  |                  |          |  |  |  |
|           |                      |                   |                  |                  |          |  |  |  |
| СТ30      |                      | E.                | assil Fuel Vehic |                  |          |  |  |  |
|           | Fossil Fuel Venicles |                   |                  |                  |          |  |  |  |
|           |                      |                   |                  | Diefu            |          |  |  |  |
|           |                      |                   |                  | Bioruel venicles |          |  |  |  |
| СТ50      |                      |                   |                  |                  |          |  |  |  |
|           | Fossil Fuel Vehicles |                   |                  |                  |          |  |  |  |
|           |                      | DiofuelVabieles   |                  |                  |          |  |  |  |
|           |                      |                   |                  |                  |          |  |  |  |
|           |                      | Electric Vehicles |                  |                  |          |  |  |  |
|           |                      |                   |                  |                  |          |  |  |  |

Background Objectives Scenarios Analysis Conclusion

#### Effect of Carbon Tax on GHG Emission in Transport Sector



- In CT50, GHG emission reduction compared to base case in transport sector is 0.03%, 0.2% and 7% in CT10, CT30 and CT50 cases.
- CT10 and CT30 are not effective to promote electric vehicles in transport sector

Effect of Carbon Tax on Fuel Use in the Industry Sector



- Cumulative coal consumption decreases by 0.6% and petroleum consumption increases by 0.3% in CT30.
- Cumulative coal consumption decreases by 12.7% but petroleum consumption increases by 48% in CT50.
- Diesel will replace coal boiler in CT50 after 2042.

# Effect of Carbon Tax on GHG Emissions in the Industry Sector

#### GHG Emissions (MtCO2e)



- GHG emissions in 2050 from industrial sector decreases by 0.1%, 12.5% and 44.1% in CT10, CT30 and CT50.
- Reduction in GHG emissions due to substitution of coal by other fuels and energy efficiency in CT cases.

| Background                                   | Objectives | Scenar | rios | Analysis | Conclusion |  |  |  |  |
|----------------------------------------------|------------|--------|------|----------|------------|--|--|--|--|
| Deployment of Low Carbon Options in Industry |            |        |      |          |            |  |  |  |  |
| 2010                                         | 2030       | 2035   | 2040 | 2045     | 2050       |  |  |  |  |



# Conclusion

- Transport sector is the major emitter of GHG emissions during 2010-2050
- However, highest GHG emission reduction occurs in residential Sector in CT10 and CT30; in CT50, highest GHG reduction takes place in the industry sector.
- Commercial sector accounts for the second highest level of GHG mitigation in CT10 and CT30, while residential sector accounts for the second highest level of mitigation in CT50.
- Reduction in GHG emission occurs mainly through the substitution of LPG with electricity in the residential sector and substitution of coal by oil and biomass in the industrial sector.
- CCS becomes cost effective from 2045 in CT30 and from 2035 in CT50.
- Biofuels in transport are cost effective after 2040 in CT30 and after 2035 in CT50.

Thank you