

Assessing the Potential Economic Impact of GHG Mitigation Policy in Land Use Change and Forestry (LUCF) in Indonesia

<u>Marissa Malahayati ^{1, 2}, Toshihiko Masui ²</u>

¹⁾ Tokyo Institute of Technology, ²⁾ National Institute for Environmental Studies E-mail: marissa.Malahayati@gmail.com

INTRODUCTION

Indonesia GHG emission mostly comes from the Land-Use Change and Forestry (LUCF) sectors. The challenge is that the concept of GHG mitigation in LUCF is a bit different than the mitigation in the other sectors. In the other sectors, the mitigation can be done by carbon restriction and increase the carbon tax. However, in the LUCF, the mitigation can be done by control the land use change, but due to different land cover and condition, the amount of emission that can be reduced can't easily predicted. In this study, we tried to first assess the potential of mitigation in LUCF sectors to the GHG emission and the economics. The mitigation we use here is increasing the yield and prepare some land endowment for reforestation. The yield improvement and rate of reforestation/ afforestation is following the rate that DDPP scenario that stated by the (Boer et al. 2016). However, we haven't added mitigation action from another sectors. So, for the carbon restriction, we still assume 3% carbon restriction in other sector.

METHODS

This study is using Computer General Equilibrium (CGE) that constructed based on Indonesia Input-Output Table (IOT) 2010, with the structure as below:

RESULT

a. <u>GDP</u>

A higher GDP can be achieved by Indonesia, if they increase the yield of the crops. Another finding is, under the carbon restriction condition, reforest/afforestation may help to reduce the GDP loss.

Table 2. GDP Comparison (Trillion IDR)

Yea	1 (BaU)	2	gair	n/ loss	3	gain/ loss		4	gain/ loss		5	gair	n/ loss
				%			%			%			%
201	8941.0	8941.1	0.1	0.001%	8941.1	0.1	0.001%	8942.6	1.6	0.02%	8942.6	1.6	0.017%
2020	12887.3	12892.9	5.6	0.044%	12891.5	4.2	0.033%	12896.6	9.3	0.07%	12896.4	9.2	0.071%
202	18192.2	18207.0	14.8	0.081%	18207.1	14.9	0.082%	18214.4	22.2	0.12%	18213.5	21.3	0.117%
2030	26649.7	26752.3	102.5	0.385%	26171.2	-478.6	-1.796%	26662.8	13.0	0.05%	26174.6	-475.2	-1.783%

160

140

120

100

87.88

b. <u>Land Area</u>

PAD COR CAS OAG RUB PAL OPL LIV WOO

80.35

Figure 1. Model Structure of the Study

However, to asses the LUCF, the information of land use change is needed. For this study we use the land conversion matrix gained from Santosa et al. (2014). The matrix was divided into 22 land types, but as the sector should be adjusted with the aggregation/disaggregation of IOT so the matrix then aggregated into 10 sectors (Table 1).

Table 1. Land Transition Matrix (ha)

	PAD	COR	CAS	OAG	RUB	PAL	OPL	LIV	woo	OFO	
PAD	6,881,200	4,855	2,662	23,142	739	1,491	985	0	420	105	
COR	13,432	2,603,034	35,224	305,663	35,448	71,534	47,261	45	26,540	6,555	
CAS	7,365	35,238	1,424,478	168,133	19,627	39,608	26,168	25	14,695	3,630	
OAG	64,018	305,711	168,090	13,568,596	169,587	342,227	226,102	213	126,969	31,363	
RUB	1,933	39,141	22,115	186,087	3,845,311	269,302	177,745	22	44,859	11,109	
PAL	3,901	78,987	44,629	375,527	269,302	8,033,000	358,630	45	90,525	22,418	
OPL	2,576	52,187	29,485	248,114	177,747	358,633	5,181,575	30	59,809	14,812	
LIV	400	512	282	2,443	517	1,043	689	3,247,000	252	63	
woo	3,741	30,678	16,965	146,697	45,239	91,292	60,316	17	5,583,731	10,899	
OFO	1,035	13,275	7,339	63,470	35,854	72,343	47,756	204	23,377	87,777,641	
	Note	Text	: Own secto	: Own sector							
		text	: highest co	: highest converted land							

Moreover, this land is treated as input for some sectors. The future land use change will be following the profit optimization scheme designed in the model. The land demand will also depend on another macroeconomics assumption (e.g. GDP growth) stated in the model.

Figure 2. Land Area Comparison

c. Total GHG emission

Table 3. Total GHG emission (Mton Co2eq)											
year	1 (BaU)	2	increase/decrease (%)	3	increase/decrease (%)	4	increase/decrease (%)	5	increase/decrease (%)		
2010	1243.8	1243.8		1243.8		1243.8		1243.8			
2015	1553.6	1556.3	0.2%	1556.3	0.2%	1556.4	0.2%	1556.4	0.2%		
2020	1836.8	1842.2	0.3%	1770.1	-3.6%	1840.6	0.2%	1768.2	-3.7%		
2025	2262.7	2266.9	0.2%	2143 6	-5 3%	2267 1	0.2%	2144 8	-5.2%		

F 80 60 9.28 20 9.28 20 9.28 20 9.28 20 9.28 20 0 6.98 2010 2015 2020 2025 2020 2025 2030 PAD COR CAS OAG RUB PAL OPL LIV WOO OFO Increasing yield for profitable crops, especially cash crops like palm and other plantation crops, may giving positive impact

especially cash crops like palm and other plantation crops, may giving positive impact on economics, but not to the forest area. We predict that if there is no reforestation/ afforestation effort, the deforestation and land use conversion will still high, because people tend to convert the land to more profitable crops.

We also add some scenario to test the model. The scenarios are follows:

Scenarios:

Business as Usual (BaU)
Yield Improvement
Yield + Carbon Limit
Yield + Reforestation
Yield + Carbon Limit+ Reforestation

2020	2202.7	2200.5	0.270	2110.0	5.570	2207.1	0.270	2111.0	0.270
2030	2895.7	2926.7	1.1%	2673.8	-7.7%	2907.7	0.4%	2675.2	-7.6%

While in the GHG emission, we predict that only improving yield will not giving a significant reduction of GHG gases. This is a reason why reforest/afforestation is important to introduced along with the yield improvement.

NEXT STEP

- Complete the scenario development and assumption for the LUCF
- Combine with mitigation technologies from other sectors
- Matching up with Indonesia emission reduction target

REFERENCES:

[1]. Boer, Rizaldi et al. 2016. Pathways to Deep Decarbonizing Agriculture, Forest and Other Land Uses Sector in Indonesia, SDSN-IDDRI.

[2].Santosa, I. et al. 2014. *Pedoman Teknis Penghitungan Baseline Emisi Dan Serapan Gas Rumah Kaca Sektor Berbasis Lahan*. Jakarta.