The 25th AIM International Workshop National Institute for Environmental Studies

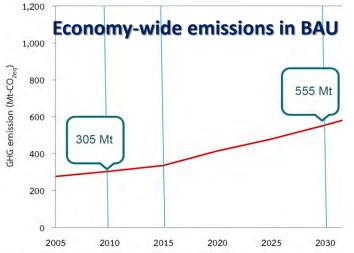
Climate Change Mitigation & AIM in Thailand

November 18, 2019

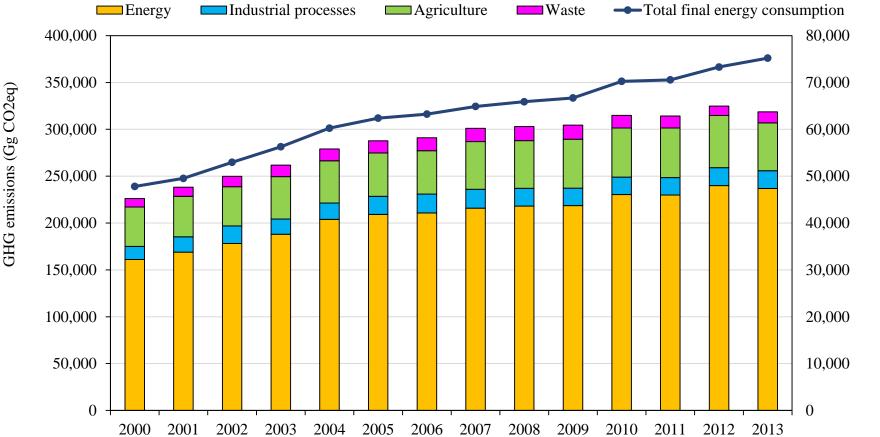
Sirindhorn International Institute of Technology THAMMASAT University

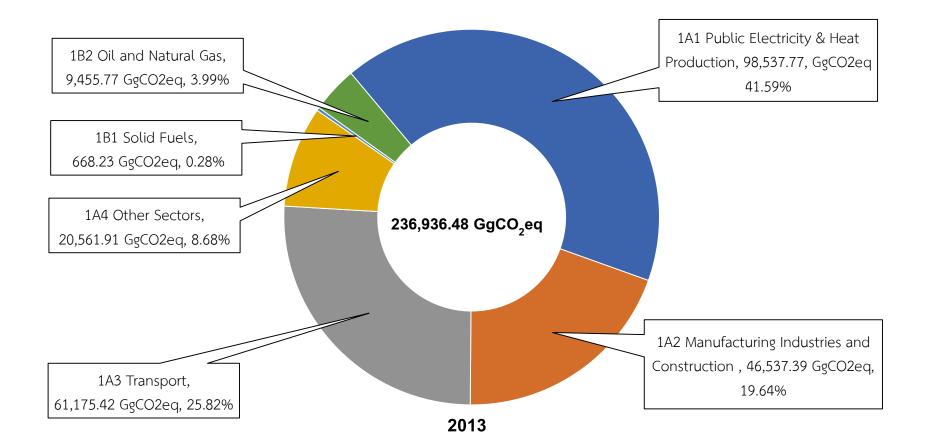
Unofficial High-level Workshop on Climate Policy and Assessment, 5 Jul 2019

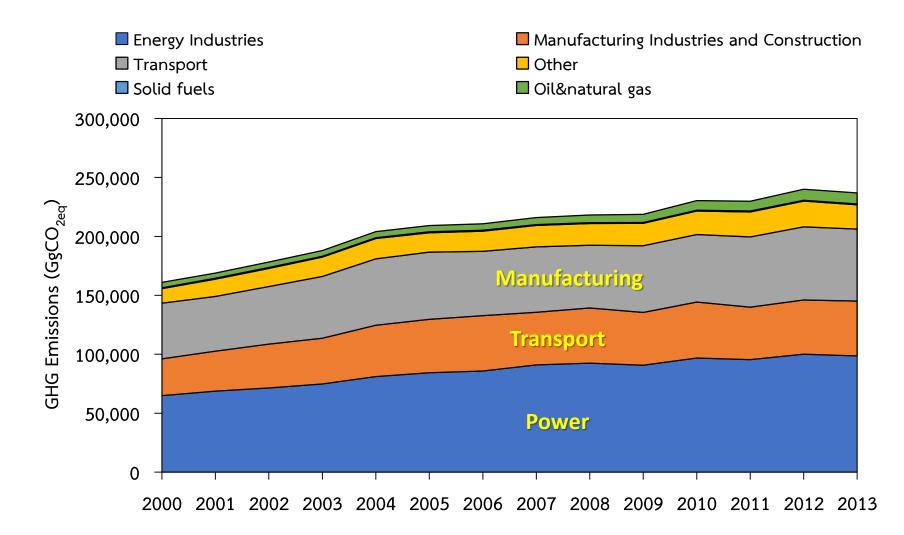
Sharing of View on Climate Change Policies and Mitigation Actions in THAILAND Pullman KingPower Hotel, BANGKOK, 30 October 2019



Climate Change Policies and Mitigation in THAILAND BANGKOK, 30 October 2019


Thailand's PM Delivered National Climate Pledge at Paris Summit


"The 20% is a goal to be achieved by the country's resources alone while the additional 5% will require international support in terms of finance, knowhow and technology"


TRENDS OF GHG EMISSIONS AND TOTAL FINAL ENERGY CONSUMPTION: 2000-2013

GHG EMISSIONS IN THE ENERGY SECTOR: 2013

TRENDS OF GHG EMISSIONS IN ENERGY SECTOR

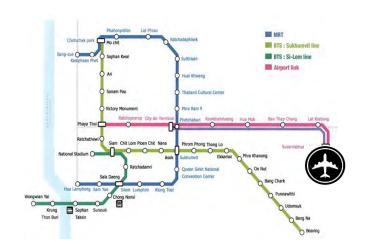
Present Policies and Technologies of THAILAND NDC ALTERNATIVE ENERGY DEVELOPMENT PLAN 2018

	AEDP 2015		AEDP 2018		Difference
RE Electricity (MW)	Target	Existing	PDP2018	New Target	2018- 2015
Solar PV	6,000	2,849	12,725	15,574	9,574
Biomass	5,570	2,290	3,496	5,786	216
Wind	3,002	1,504	1,485	2,989	13
Biogas (Waste)	600	382	546	928	328
Municipal Solid Waste	500	500	400	900	400
Industrial waste	50	31	44	75	25
Mini-hydro	376	188	-	188	188
Large hydro (EGAT)	2,906	2,918	-	2,918	12
Biogas (Crop)	680	-	-	-	680
Total	19,684	10,662	18,696	29,358	9,674
RE electricity (%)	20%	10%	20%	33%	13%

Present Policies and Technologies of THAILAND NDC

- Climate Change Master Plan for 2015–2050
- Power Development Plan (PDP) for 2015–2036
- Thailand Smart Grid Development Master Plan for **2015**–2036
- Energy Efficiency Plan (EEP) for 2015–2036
- Alternative Energy Development Plan (AEDP) for **2015**–2036
- Environmentally Sustainable Transport System Plan for 2013– 2030
- National Industrial Development Master Plan for **2012–**2031
- Waste Management Roadmap

- Renewable energy generation and consumption
- Freight and passenger transport (mass rapid transit lines, double-track railways, bus transit improvements)
- Waste-to-energy technologies

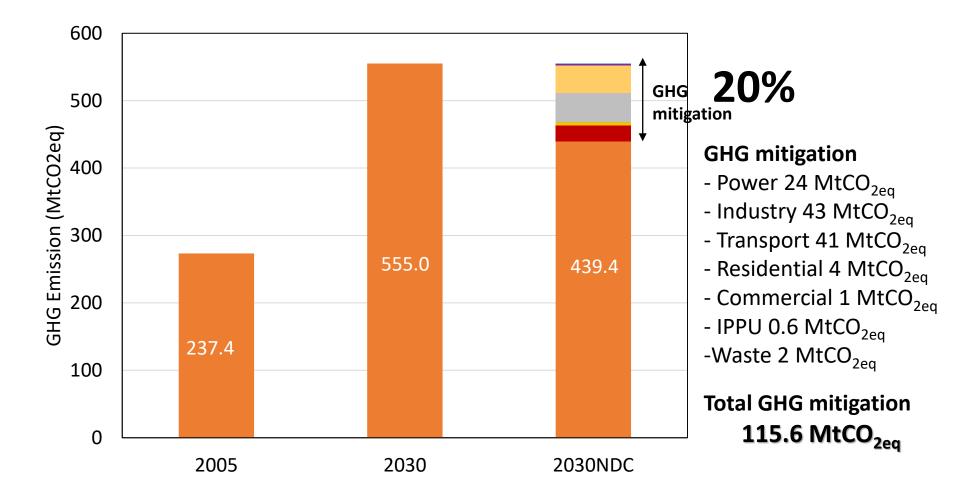

Present Policies and Technologies of THAILAND NDC ENERGY EFFICIENCY PLAN 2015

EE Measures	Energy Saving (ktoe) Target EEP 2015	
Measure for designated factory and buildings	5,156	
management		
Measure for building standard/building codes	1,10	56
Measure for energy efficiency standard and labeling	4,15	50
Measure on compulsory energy efficiency resource	50	0
standards (EERS) for energy production		
Measure for financial support	9,524	
Measure on the use of LED	991	
Measure on energy conservation in the transportation	30,213	
sector		
Measure for promotion of education, research,	-	
technology development on energy conservation		
Measure on personnel development in energy	-	
conservation fields		
Measure to create public awareness on energy	-	
conservation		

Present Policies and Technologies of THAILAND NDC MASS RAPID TRANSIT IN BANGKOK

2019 Bangkok area

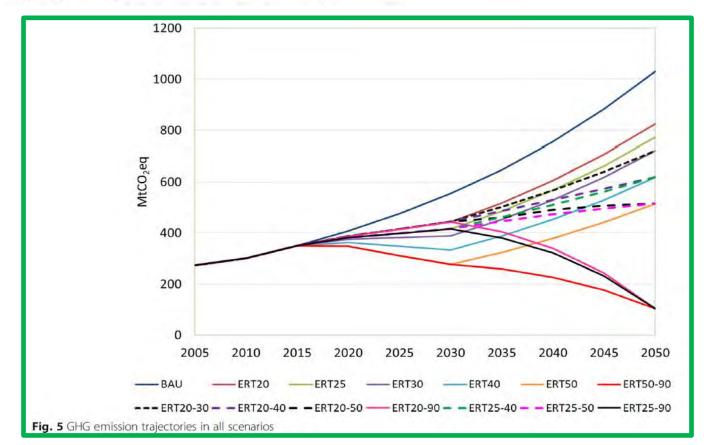
2025 Bangkok area



2021 Monorail, Government Complex

THAILAND'S GHG EMISSION AND MITIGATION: NDC 2030

Rajbhandari et al. Energy, Sustainability and Society https://doi.org/10.1186/s13705-019-0200-9

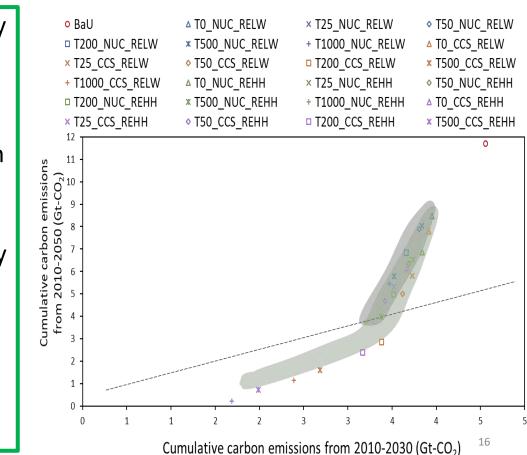

(2019) 9:19 Energy, Sustainability and Society

ORIGINAL ARTICLE

The impact of different GHG reduction scenarios on the economy and social welfare of Thailand using a computable general equilibrium (CGE) model

Salony Rajbhandari¹, Bundit Limmeechokchai^{1*} and Toshihiko Masui²

CONCLUSIONS


- The macroeconomic impacts of peak emission scenarios are assessed.
- An economic structural and energy system changes are required to avoid enormous costs in reducing GHG emissions to the targets.
- Lowering the activity level of the energy-intensive industries, improving end-use **EE**, switching fuel, deploying **CCS** technologies in the **power** and **industrial** sectors, and expanding **RE** technologies are identified to be important mitigation measures for Thailand in attaining emissions **peak by 2030** in order to contribute towards the **long-term goal** of the Paris Agreement.

CARBON MANAGEMENT 2018, VOL. 9, NO. 5, 515–531 https://doi.org/10.1080/17583004.2018.1536169

Thailand Energy System Transition to Keep Warming Below 1.5 Degrees

Puttipong Chunark and Bundit Limmeechokchai

- The figure suggests that early actions should be taken to achieve net zero CO₂ emissions.
- CO₂ emissions should peak in 2015 at US\$1,000 /tCO₂ in the CCS_REHH scenario.
- Because of renewable energy deployment and fossil fuel based with CCS and BECCS, CO₂ emissions are completely removed from the power sector in the CCS_REHH scenario.

Check for updates

CONCLUSIONS

- Keeping net cumulative carbon emissions virtually zero can be achieved during 2030-2050.
- Zero CO₂ emissions strategies for THAILAND
 - CCS technologies (fossil-based fuel plants integrated with CCS and BECCS)
 - Stringent RE target
 - CO₂ emission taxes (US\$500-US\$1000 per tCO₂)
 - Climate change awareness
 - Capacity building for organizations, government and communities

Pradhan et al. Carbon Balance Manage (2019) 14:3 Carbon Balance and Management https://doi.org/10.1186/s13021-019-0119-7

GHG mitigation in Agriculture, Forestry and Other Land Use (AFOLU) sector in Thailand

Bijay Bahadur Pradhan, Achiraya Chaichaloempreecha and Bundit Limmeechokchai

80 Agriculture 60 Emission and removals GHG emission (MtCOzeq) from soils 40 Forest and grassland 20 conversion 0 Changes in forest and other woody biomass stocks -20 AFOLU Net Emission -40 LULUCF Net emission -60 2015 2020 2030 2040 2050 Fig. 7 Emissions from the AFOLU sector during 2015–2050

GHG Emissions from AFOLU sector during 2015-2050 (Mt-CO₂e)

Emission Sources	Mitigation options	Unit	Cost/unit in 2010 US\$	Mitigation tCO ₂ eq/unit/yr	Ref.
Enteric fermentation	Improved feeding (replacing roughage with concentrates)	Head	-21.2	0.45	[18,19]
	High genetic merit	Head	0	0.32	[32-34]
Manure management	Dome digester	Head ^a	44	0.62	[35]
	Daily spread manure	Head	2.2	0.33	[35]
Rice cultivation	Midseason drainage	Hectare	0	0.36	[9,32]
	Incorporation of off-season rice straw	Hectare	0	0.45	[9,32]
	Replace urea with ammonium sulphate	Hectare	1.5	0.12	[9,32]
Managed soils	High-efficiency fertilizer application	Hectare	32	0.65	[9]
	Slow-release fertilizer application	Hectare	2150	0.76	[35]
	Tillage and residue management	Hectare	5	0.08	[36]

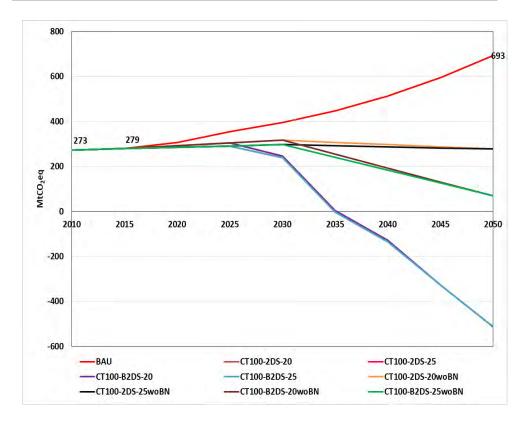
Table 2 Countermeasure in the Agriculture Sector Thailand

^a The dome digester cost has been converted into cost per head by dividing the cost by number of cows/buffaloes Center for Applied Economic Research (CAER). Support to the development and implementation of the Thai climate change policy. Thailand: Kasetsart University; 2018.

Table 3 Countermeasure in the LULUCF Sector Thailand

Mitigation options	Cost (US\$/ha/year)	Mitigation (tCO ₂ eq/ha/year)
Sustainable management of production forest areas ^a	15.4	11.3
Conservation of existing protection forests	23.0	11.1
Reforestation ^b	58.1	13.6
Planting long-rotation large timber trees ^a	9.3	19.6
Growing long-rotation non-timber product forest ^a	7.0	14.6
Reduction impact logging	27.8	5.1

Sources: ^aHoa et al. [18], ^bGraham et al. [14]

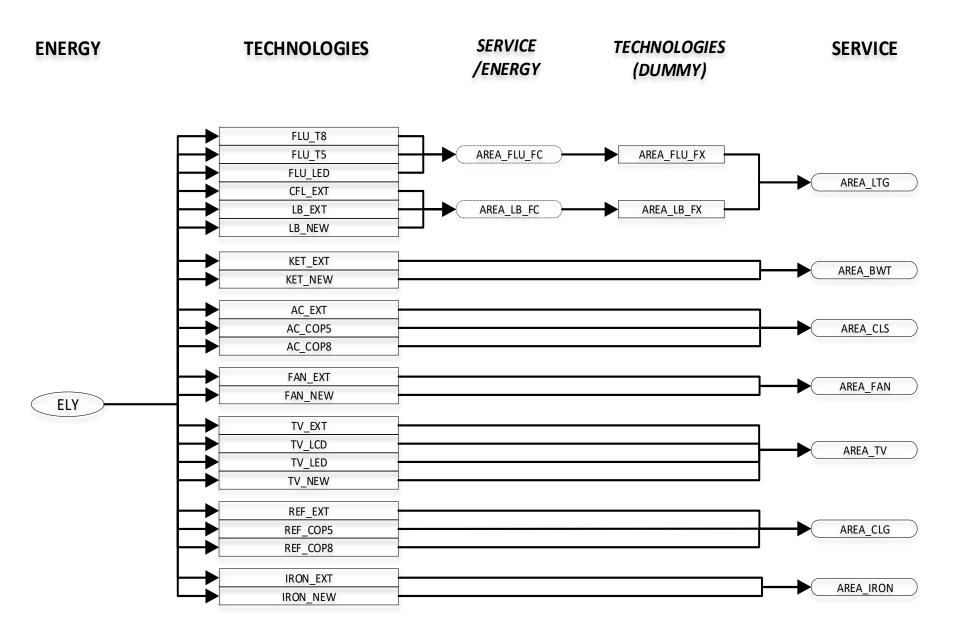

Center for Applied Economic Research (CAER). Support to the development and implementation of the Thai climate change policy. Thailand: Kasetsart University; 2018.

CONCLUSIONS

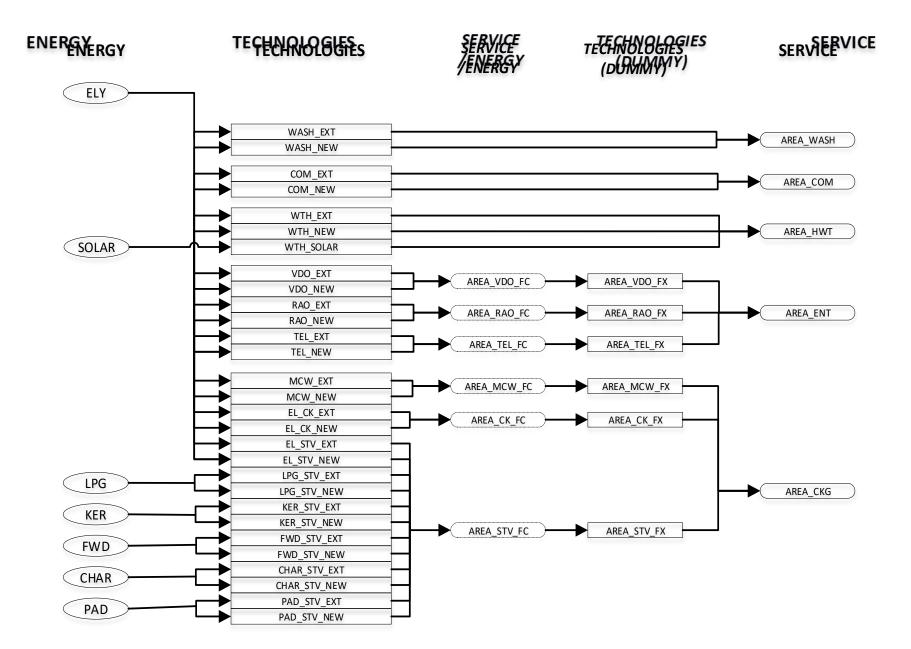
- This study used **AFOLU-B**, which is a bottom-up model, for the analysis
- Net sequestration in AFOLU sector will be possible with mitigation/sequestration measures
- Net emission from the AFOLU would increase from 8.3 MtCO₂eq in 2015 to 24.6 MtCO₂eq in 2050.
- In 2050, net sequestration would be 1.2 MtCO₂eq at carbon price of \$5 per tCO₂eq, 21.4 at \$10 per tCO₂eq and 26.8MtCO₂eq at \$500 per tCO₂eq.
- In Thailand AFOLU sector, the carbon price above \$10 per tCO₂eq will not be effective to achieve significant additional mitigation/sequestration.

Thailand's GHG Emission Profile under LTS Scenarios

GHG Emission Profile under BAU, Emission & Technology Constraint Scenarios Including Carbon Tax


LTS Scenarios with Carbon Tax

Scenario	Availability of	GHG Emission Constrain			
	Technology	2030	2050		
BAU	All	-	-		
Emission Constraint Sce	Emission Constraint Scenarios including Carbon Tax of				
US\$100/tCO ₂ eq					
CT100-2DS-20	All	20%	60%		
CT100-2DS-25	All	25%	60%		
CT100-B2DS-20	All	20%	90%		
CT100-B2DS-25	All	25%	90%		
Emission & Technology Constraint Scenarios including Carbon Tax of					
US\$100/tCO ₂ eq					
CT100-2DS-20woBN	Without both BECCS & nuclear power	20%	60%		
CT100-2DS-25woBN	Without both BECCS & nuclear power	25%	60%		
CT100-B2DS-20woBN	Without both BECCS & nuclear power	20%	90%		
CT100-B2DS-25woBN	Without both BECCS & nuclear power	25%	90%		


- A higher GHG emission constraint scenarios of 20%-90% & 25%-90% during 2030 to 2050 along with the imposition of carbon tax of US\$100/tCO₂e forces the selection of BECCS & Nuclear Power leading to negative emissions.
- In the absence of BECCS & Nuclear Power, the GHG emissions would be higher & positive during 2035 to 2050.

٠

Updated Thailand's AIM/Enduse model in the residential sector

Updated Thailand's AIM/Enduse model in the residential sector

どうもありがとう Thank You