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H Motivations

Global warming

Highly fluctuating electricity demand

L} *Decrease the efficiency of electricity supply system
sIncrease the fossil fuel consumption

Warming urban environment in summer

L}Multiple problems such as heat strokes

Urbanization

It is important to clarify the relationship
between weather conditions
and the hourly electricity demand



m Overview

Target Areas

« Jurisdiction of 10 electric power companies in Japan
(EPC)

Method over view

— Build regression models for each EPC
Predictor Explained variable
Multiple variables =———- Hourly

Related to « weather conditions electricity Consumption
daily cycle of human activities

.

— Simulation

Represent the Temperature response functions
Based on simulation by the constructed models

N 2

Understanding the relationship
between weather conditions and the hourly electricity demand



B Temperature response function(TrFs)

*Also called Energy signature

U-shaped V-shaped
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Application:

Important!
Affects

assumptions of

other models!

TRFS — Basic Units

* BPT - Reference temperature for HDD/CDD

* BPT, Slope - Electricity demand projection



® Data and Variables

Predictors

Temperature (TEMP)

Humidity (HuM)

%

and FY2017

Hourly averaged relative humidity in FY2016
and FY2017

Hourly averaged total radiation in FY2016

Names (Abbreviations) Units Data Description Data Sauce
Organization for
. i . Cross-regional
Explained . . - Hourly electricity demand in each EPC 2
Variable Historical electricity demand (EC) Mwh jurisdictional area. Coordination of

Transmission

] Operators Japan,
. ourly averaged air temperature in
C

Sleeping people
(SLEEP%)

%

The percentage of people who are sleeping at
the hour.

- )
Historica]  Solar radiation (SUN) MJ/m? 1 Ey2017 IJVIaeptaer(;roIogicaI
weather : Average wind speed in ten minutes before Agenc

Wind speed (WIND) M/s  each hour in FY2016 and FY2017 gency

. Hourly total rainfall amount in FY2016 and
Rainfall amount (RAIN) mm  Fy2017
Hourly total snow depth in FY2016 and
Snow depth (SNOW) cm  FY2017
: Discomfort Index. Derived from
Thermal Discomfort Index (DI) - DI = 0.81 (TEMP) + 0.01 (HUM) (0.99 (TEMP) — 14.3) + 463  Historical
index . . Wind Chill Index. Weather Data
Wind Chill (WCI) —  WCI= (33— TEMP)(10.45 + 10(WIND®5) — WIND) Above
: Weekends, holidays, the New Year, and the  Calendars in
I-(Igng?ys and weekends dummy _ Obon Festival were set as 1, and all other FY2016 and
days were set as 0 in FY2016 and FY2017  FY2017

Human Working people % The percentage of people who are working at
activity  (WORK%) % the hour. _

Awake people The percentage of people awake in their NHK Broadcasting

% Culture Research
(WAKE%) homes at the hour. Institute.




B Human activity data

%

Human activity in each hour

100 H

(Data source: NHK Broadcasting Culture Research Institute, 2015)



B Model construction

MARS : multivariate adaptive regression splines (Friedman, 1991)

« Captures the complexity of the potential model by applying a locally
linear models.

« Selects important variables during the model building process.
« Showed excellent prediction performance in short-term power

consumption modeling (sigauke & Chikobvu, 2010; Al-Musaylh, Deo, Adamowski, & Li, 2018)

—Intuitive-understanding-for-MARS performance

Flexible and Highly generalizable
modeling is expected




B Constructed models

Performed well in all power company models.
0.870(Kyushu ) ~ 0.953(Okinawa)

Hokkaido Tohoku Tokyo  Chubu Hokuriku Kansai Chugoku Shikoku Kyushu Okinawa

R? 0.922 0.909 0.935 0.902 0.890 0.933 0.908 0.903 0.873 0.953
generalized R? 0.921 0.907 0.934 0.900 0.887 0.932 0.907 0.901 0.870 0.953]
Number of terms 35 39 29 37 39 25 29 32 35 30
Number of predictors adopted 9 9 8 10 9 7 7 7 8 9
Number of input predictors 11 11 11 11 11 11 11 11 11 11
TEMP o o o o o o o o o o
HUM
SUN o o o o o o o o o o
WIND : : . o o : . . o o
RAIN o : o o : o
Adopted SNOW o o o
predictors DI o o o o o o o o o o
wcl o o o
HDD o o o o o o o o o
WORK% o o o o o o o o o o
WAKE% o o o o o o o o o o
SLEEP% o o o o o o o o o o




m Model performance

High-quality models in terms of

both fitting and generalization
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Simulating
Temperature Response Functions



® Hourly simulation

Settings for the simulation

Weather predictors
TEMP

Regular sequences of the value

Weather predictors
HUM, SUN, WIND, RAIN, SNOW

Average values of each time period at each
location in weekdays.

The thermal indicators
DI, WCI

Calculated from the weather predictors .

Holiday dummy
HDD

Weekdays: 0

Human activity predictors
WORK%, WAKE%, SLEEP%

Values of each time period in weekdays.
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m Simulation In day-time and night-time

Settings for the simulation

Weather predictors

TEMP

Regular sequences of the value x-axis : Temperature (°C)

Weather predictors

HUM, SUN, WIND, RAIN, SNOW

Average values in day-time and night-time at y-axis : Power consumption (MWh)

each location in weekdays.

The thermal indicators

DI, WCI

Calculated from the weather predictors . O Observation

Day-time simulation

Holiday dummy

HDD

Weekdays: 0 (from 10:00 to 18:00)

Human activity predictors

—— Night-time simulation
(from 1:00 to 5:00)

Average values during day-time and night-time
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4,000
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3,000

2,500
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10,000

WORK%, WAKE%, SLEEP% in weekdays.
Hokkaido Tohoku Tokyo Chubu Hokuriku
55,000
14000 25,000 5000
50,000
4,500
12,000 45000 20,000
40,000 4,000
10,000 35,000 3500
15,000
30,000 3,000
8,000
25,000 2,500
10,000
20,000 2,000
-10 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20
Kansai Chugoku Shikoku Kyushu Okinawa
1,400
10,000 5,000 4
14,000
900 4500 1200
12,000
8,000 4000
3500 10,000 1000
7,000
3,000
6,000 8,000 800
2,500
5,000 6,000
2,000 600
-10 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20

30

30
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B Approximation

“Temperature response functions”

are approximated by piecewise

linear function using MARS.
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B Approximate function

Parameters(the coordinates of breakpoints, x-axis : Temperature (°C)
the coefficients of each linear function) y-axis : Power consumption (MWh)

can be obtained
from the piecewise linear function O Observation

— Approximate function for day-time
‘v — Approximate function for night-time

Provide the parameters to other models

Hokkaido Tohoku Tokyo Chubu Hokuriku
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X 12000 45,000 20000
4000
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6000 8000 800
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B The effect of humidity on power consumption

Settings for the simulation

Weather predictors

TEMP,HUM

Regular sequences of the value

Weather predictors

SUN, WIND, RAIN, SNOW

Average values in day-time at each location in
weekdays.

The thermal indicators
DI, WCl

Calculated from the Weather predictors .

Holiday dummy

HDD

Weekdays: 0

Human activity predictors

WORK%, WAKE%, SLEEP%

Values for each time period in weekdays.
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Relative humidity

N I O

10 20 30 40 50 60 70 80 90 100

Chubu Hokuriku

25,000
5,000
4,500

20,000
4,000
3,500

15,000
3,000
2,500

10,000
2,000

-10 0 10 20 30 -10 0 10 20 30
Kyushu Okinawa

1,400

14,000
1,200

12,000
10,000 1,000
8,000 800

6,000
600

-10 0 10 20 30 -10 0 10 20 30 15



B The effects of humidity in detail

A simulation
for Tokyo in daytime
as an example

An actual humidity
range in Tokyo when
the temperature

is higher than 30°C

[272%] [805%]

EC
(MWh) .
0004 Tokyo - Day time
Humidity 80%
- = = Humidity 27%
50,000+
o (1.3, 46,980)
(1.3,46,337)
45,000 4 \ . 1\/
S
N\
40,000 4
(25.5,39,170)
. (20.0,33,715) o '/
&S
35,000 (12.5,36,210) ,@33 /
0 o255, 34,608)
\a?\\h;gk
(21.5, 32,450)

(35:8+56,550)

Temperature 30°C
Humidity 80%

666)

—--46,773

reduced
by 13.8%.

---40,313

Power copsumption

Temperature 30°C

o 5 10 15 20 25
Temperature(°C)

30

35 Humidity 27%

16



B BPT(Balance point temperature)

— BPT(Balance point temperature)

The bottom of the V-shaped
temperature response function
(Amato et al. 2005)

%

BPT decrease as humidity rises

:Under the conditions wherein the humidity
is high, the power consumption for cooling
begins to increase at lower temperatures.



B Summary

we proposed a series of methods to understand the relationship
between weather conditions and the hourly electricity demand

Summarized results
« The constructed models are of high-quality in terms of
1)fitting, 2)generalization capability, and 3) simulating accurate
temperature response functions

« Two different Temperature Response Functions were identified in a day;
for day-time (from 10:00 to 18:00) and for night-time (from 1:00 to 5:00).

« Humidity affects electricity consumption significantly when temperature
is high

« Under the condition wherein the humidity is high, the power consumption
for cooling begins to increase at lower temperatures.

Suggestions ‘.'

« The proposed method is recommended for identifying temperature
response functions; especially the consideration of multiple factors
are important.

« The effect of humidity should not be ignored.
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Thank you

| always welcome your critical comments, suggestions, and corrections.



