

Assessing climate sensitivity of hourly electricity demand in Japan

Yuki HIRUTA, Lu GAO and Shuichi ASHINA

November 18-19, 2019

National Institute for Environmental Studies

Center for Social and Environmental Systems Research

Research Associate

Motivations

It is important to clarify the relationship between **weather conditions** and the **hourly electricity demand**

Overview

Target Areas

 Jurisdiction of 10 <u>electric power companies</u> in Japan (EPC)

Method over view

Temperature response function(TRFs)

The 25th

International Workshop

		Names	(Abbreviations)	Units	Data Description	Data Sauce		
Explained Variable		Historical ele	ctricity demand (EC)	MWh	Hourly electricity demand in each EPC jurisdictional area.	Organization for Cross-regional Coordination of Transmission Operators Japan,		
Predictors		Temperature (TEMP)		°C	Hourly averaged air temperature in FY2016 and FY2017	Japan Meteorological Agency		
	-	Humidity (HUM)		%	Hourly averaged relative humidity in FY2016 and FY2017			
	Historical	Solar radiation (SUN)		MJ/m ²	Hourly averaged total radiation in FY2016 and FY2017			
	weather Wind speed		(WIND)	m/s	Average wind speed in ten minutes before each hour in FY2016 and FY2017			
		Rainfall amount (RAIN)		mm	Hourly total rainfall amount in FY2016 and FY2017	-		
		Snow depth	ow depth (SNOW)		Hourly total snow depth in FY2016 and FY2017			
	Thermal	Discomfort Ir	ndex (DI)	_	Discomfort Index. DI = 0.81 (TEMP) + 0.01 (HUM) (0.99 (TEMP) - 14.3) + 46.3	Derived from Historical		
	index	Wind Chill (WCI)		_	Wind Chill Index. WCI = (33 - TEMP)(10.45 + 10(WIND ^{0.5}) - WIND)	Weather Data Above		
		Holidays and (HDD)	weekends dummy	_	Weekends, holidays, the New Year, and the Obon Festival were set as 1, and all other days were set as 0 in FY2016 and FY2017	Calendars in FY2016 and FY2017		
	Human activity	Working people (WORK%) Awake people (WAKE%)		%	The percentage of people who are working at the hour.	NHK Broadcasting Culture Research Institute.		
				%	The percentage of people awake in their homes at the hour.			
		Sleeping peop (SLEEP%)	ble	%	The percentage of people who are sleeping at the hour.			

Human activity data

(Data source: NHK Broadcasting Culture Research Institute, 2015)

Model construction

MARS : multivariate adaptive regression splines (Friedman, 1991)

- **Captures** the complexity of the potential model by applying a locally linear models.
- Selects important variables during the model building process.
- Showed excellent prediction performance in short-term power consumption modeling (Sigauke & Chikobvu, 2010; Al-Musaylh, Deo, Adamowski, & Li, 2018)

Performed well in all power company models. 0.870(Kyushu) \sim 0.953(Okinawa)

		Hokkaido	Tohoku	Tokyo	Chubu	Hokuriku	Kansai	Chugoku	Shikoku	Kyushu	Okinawa
R ²		0.922	0.909	0.935	0.902	0.890	0.933	0.908	0.903	0.873	0.953
generalized R ²		0.921	0.907	0.934	0.900	0.887	0.932	0.907	0.901	0.870	0.953
Number of terms		35	39	29	37	39	25	29	32	35	30
Number of predictors adopted		9	9	8	10) 9	7	7	7	8	9
Number of input predictors		11	11	11	11	. 11	11	11	11	11	11
	TEMP	0	0	0	0	0	0	0	0	0	0
	НИМ	-	-	-	-	-	-	-	-	-	-
	SUN	0	0	0	0	0	0	0	0	0	0
	WIND	-	-	-	0	0	-	-	-	0	0
	RAIN	0	-	0	0	-	-	-	-	-	0
Adopted	SNOW	0	0	-	-	0	-	-	-	-	-
predictors	DI	0	0	0	0	0	0	0	0	0	0
	WCI	-	0	-	0	-	-	-	-	-	0
	HDD	0	0	0	0	0	0	0	0	0	-
	WORK%	0	0	0	0	0	0	0	0	0	0
	WAKE%	0	0	0	0	0	0	0	0	0	0
	SLEEP%	0	0	0	0	0	0	0	0	0	0

Model performance

High-quality models in terms of

both fitting and generalization

x-axis : Actual (MWh) y-axis : Prediction (MWh)

- O : In-sample result
- + : Out-of-sample result
- ----- : OLS regression line for in-sample result
- : OLS regression line for out-of-sample result
- R_{in}^2 : The coefficient of determination of OLS (in-sample)
- R_{out}^2 : The coefficient of determination of OLS (out-of-sample)

Simulating Temperature Response Functions

Hourly simulation

Settings for the simulation				
Weather predictors TEMP	Regular sequences of the value			
Weather predictors HUM, SUN, WIND, RAIN, SNOW	Average values of each time period at each location in weekdays.			
The thermal indicators DI, WCI	Calculated from the weather predictors .			
Holiday dummy HDD	Weekdays: 0			
Human activity predictors WORK%, WAKE%, SLEEP%	Values of each time period in weekdays.			

Settings for the simulation

x-axis : Temperature (°C)

y-axis : Power consumption (MWh)

O Observation

Simulation in day-time and night-time

Weather predictors TEMP	Regular sequences of the value			
Weather predictors HUM, SUN, WIND, RAIN, SNOW	Average values in day-time and night-time at each location in weekdays.			
The thermal indicators DI, WCI	Calculated from the weather predictors .			
Holiday dummy HDD	Weekdays: 0			
Human activity predictors WORK%, WAKE%, SLEEP%	Average values during day-time and night-time in weekdays.			

Settings for the simulation

x-axis : Temperature (°C)

y-axis : Power consumption (MWh)

- O Observation
- Day-time simulation (from 10:00 to 18:00)

 Night-time simulation (from 1:00 to 5:00)

Approximation

"Temperature response functions" are approximated by **piecewise linear function** using MARS. x-axis : Temperature (°C) y-axis : Power consumption (MWh)

- O Observation
- Day-time simulation
- Night-time simulation
- Approximate function

 breakpoints

Approximate function

Parameters(the coordinates of breakpoints, the coefficients of each linear function) can be obtained from the piecewise linear function

Provide the parameters to other models

x-axis : Temperature (°C)

y-axis : Power consumption (MWh)

O Observation

- Approximate function for day-time
- Approximate function for night-time

The effect of humidity on power consumption

Settings for the simulation				
Weather predictors TEMP,HUM	Regular sequences of the value			
Weather predictors SUN, WIND, RAIN, SNOW	Average values in day-time at each location in weekdays.			
The thermal indicators DI, WCI	Calculated from the Weather predictors .			
Holiday dummy HDD	Weekdays: 0			
Human activity predictors WORK%, WAKE%, SLEEP%	Values for each time period in weekdays.			

x-axis : Temperature(°C)	
y-axis : Power consumption	(MWh)

O Observation

BPT(Balance point temperature)

BPT decrease as humidity rises

:Under the conditions wherein the **humidity is high**, the power consumption for cooling **begins to increase at lower temperatures**.

Summary

we proposed a series of methods to understand the relationship between **weather conditions** and the **hourly electricity demand**

Summarized results

- The constructed models are of high-quality in terms of <u>1)fitting</u>, <u>2)generalization capability</u>, and 3<u>) simulating accurate</u> <u>temperature response functions</u>
- **Two different Temperature Response Functions** were identified in a day; for day-time (from 10:00 to 18:00) and for night-time (from 1:00 to 5:00).
- Humidity affects electricity consumption significantly when temperature is high
- Under the condition wherein the humidity is high, the power consumption for cooling begins to increase at lower temperatures.

Suggestions

- The proposed method is recommended for identifying temperature response functions; especially the consideration of multiple factors are important.
- The effect of humidity should not be ignored.

References

- Japan Ministry of Economy, Trade and Industry: Annual Report on Energy for Fiscal Year 2018 (Energy White Paper 2019), Gyosei, 2019. (In Japanese)
- Federation of Electric Power Companies: Electric power load leveling the power situation, (In Japanese) http://www.fepc.or.jp/enterprise/jigyou/juyou/index.html.
- Heat Island Countermeasure Promotion Conference: Heat Island Countermeasure Outlines, 2013. (In Japanese)
- Wang, Yaoping, Bielicki, Jeffrey M: Acclimation and the response of hourly electricity loads to meteorological variables, Energy, vol. 142, pp. 473–485, 2018.
- Hirano, Yujiro, Yoshida, Yukiko, Narumi, Daisuke: Examination of the effects of climatic conditions upon power consumption in the commercial sector by region and year, Proceedings of the Air-Conditioning and Sanitation Engineering Conference, vol. 2016.9, pp. 9–12, 2016. (In Japanese)
- Hirano, Yujiro, Gomi, Kei, Nakamura, Shogo, Yoshida, Yukiko, Narumi, Daisuke, Fujita, Tsuyoshi: Analysis of the impact of regional temperature pattern on the energy consumption in the commercial sector in Japan, Energy and Buildings, vol. 149, pp. 160–170, 2017.
- Yokoyama, Makoto, Tanaka, Takahiro: Evaluation of future CO2 emissions using power consumption temperature sensitivity, and landuse scenario proposal and evaluation using sea breeze, Proceedings of the Air-Conditioning and Sanitation Engineering Conference, vol. 2016.10, pp. 45–48, 2016. (In Japanese)
- Narumi, Daisuke, Kishimoto, Takuya, Sakaguchi, Katsutoshi, Shimoda, Yoshiyuki, Mizuno, Minoru: Temperature Sensitivity related to power consumption targeting Osaka Prefecture D-35, Proceedings of the Air-Conditioning and Sanitation Engineering Conference, vol. 2004.2, pp. 1071–1074, 2004. (In Japanese)
- Kittaka, Kosuke, Miyazaki, Hiroshi: Temperature sensitivity of power consumption over a wide area, The Architectural Institute of Japan's Journal of Environmental Engineering, vol. 79, no. 704, pp. 891–899, 2014. (In Japanese)
- Ihara, T., Genchi, Y., Sato, T., Yamaguchi, K. & Endo, Y: City-block-scale sensitivity of electricity consumption to air temperature and air humidity in business districts of Tokyo, Japan, Energy, vol. 33, pp. 1634–1645, 2008.

- Amato, Anthony D., Ruth, Matthias, Kirshen, Paul, Horwitz, James: Regional Energy Demand Responses To Climate Change: Methodology And Application To The Commonwealth Of Massachusetts, Climatic Change, vol. 71, no. 1, pp. 175–201, 2005.
- Mukherjee, Sayanti, Nateghi, Roshanak: Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States, Energy, vol. 128, pp. 688–700, 2017.
- Mukherjee, Sayanti, Vineeth, C. R., Nateghi, Roshanak: Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework, Applied Energy, vol. 235, pp. 561–1582, 2019.
- Ohashi, Yukitaka: Thermal Index, Tenki, vol. 57, no. 1, pp. 57–59, 2010. (In Japanese)
- Friedman, Jerome H.: Multivariate Adaptive Regression Splines, The Annals of Statistics, vol. 19, no. 1, pp. 1–67, 1991.
- Organization for Cross-regional Coordination of Transmission Operators: Wide Area Engine System, (In Japanese) http://occtonet.occto.or.jp/public/dfw/RP11/OCCTO/SD/LOGIN_login#.
- Japan Meteorological Agency: Past weather data, (In Japanese) http://www.data.jma.go.jp/gmd/risk/obsdl/index.php.
- NHK Broadcasting Culture Research Institute: Databook Citizen Activity Hourly Survey, NHK Publishing, 2015. (In Japanese)
- James, Gareth, Witten, Daniela, Hastie, Trevor, Tibshirani, R. J.: An introduction to statistical learning : with applications in R (Springer texts in statistics), Springer, 2013.
- Shimokawa, Toshio, Sugimoto, Tomoyuki, Goto, Musashi: Tree structure approach method, Tokyo, Kyoritsu Publishing, 2013. (In Japanese)
- Sigauke, C., Chikobvu, D.: Daily peak electricity load forecasting in South Africa using a multivariate non-parametric regression approach, ORiON, Vol. 26, No. 2 (2010), 2010.
- Al-Musaylh, Mohanad S., Deo, Ravinesh C., Adamowski, Jan F., Li, Yan.: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia, Advanced Engineering Informatics, vol. 35, pp. 1–16, 2018.
- Japan Ministry of the Environment: Actual analyses and countermeasures for the heat island phenomenon (Heat Island Condition Analysis, Survey, and Investigation Committee Report), 2001. (In Japanese)

Thank you

I always welcome your critical comments, suggestions, and corrections.