

2012

2015

2017

2018

Future distribution and environmental impact of iron and steel industry in China

Zhaoling Li¹, Tatsuya Hanaoka¹

¹Center for Social and Environmental Systems research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan

Research objectives Introduction China's iron and steel industry (ISI): The current researches analyzed China's ISI from industrial level. This research focuses on plant level analysis to estimate the environmental impact and provide Consumed 688.4 Mtce in 2013, which is 16.5% of the national total; more detail suggestions. \Box Emitted 16.2% of total national CO₂ emissions in 2013 (1687.2 Mtons); ✓ Site selection □Air pollutants emission and heavy metal emission from iron and steel industry Distribution ✓ Capacity elimination (ISI) are also serious problems. Table 1 Restriction of air pollutants emission from iron and steel industry in China ✓Total capacity Capacity Plant level PM (mg/m³) SO₂ (mg/m³) NO_x (mg/m³) Oxygen content ✓ EAF ratio 80 500 600 Energy consumption 50 300 General 200 Optimization ✓ emissions 40 Sensitive region 300 180 2+26 region 20 100 50 Environme Sintering & pelletizing 10 50 16% 35 Technologies Future development ntal impact 150 Other process 10 50

AIM/Enduse model

recovery ; Coke dry quenching; Moisture co Desulfuraza	ontrol; ation	reduction; Desulfurazation; Deep bed sintering; Low temperature sintering	Injecting of pulverized coal; Dehumidify; Dust remove;	system;	power s	upply;	
	EFE	E Share of EA	F Share of B	OF CCS	Carbon tax	Energy tax	RE
BaU1	Ref	Free	Free	-	-	-	Free
BaU2	2d	Free	Free	-	-	-	Free
CM1L	Ref	Low	High	-	-	-	INDC
CM1M	Ref	Mid	Mid	-	-	-	INDC
CM1H	Ref	High	Low	-	-	-	INDC
CM2L	2d	Low	High	-	-	-	INDC
CM2M	2d	Mid	Mid	-	-	-	INDC
CM2H	2d	High	Low	-	-	-	INDC
CM1MT	Ref	Mid	Free	CCS	T2000	T100	INDC
CM1HT	Ref	High	Free	CCS	T2000	T100	INDC
CM2MT	2d	Mid	Free	CCS	T2000	T100	INDC
CM2HT	2d	High	Free	CCS	T2000	T100	INDC
CM1MT0	Ref	Mid	Free	CCS	T2000	-	INDC
CM1HT0	Ref	High	Free	CCS	T2000	-	INDC

Conclusion: 1. This framework is able to handle different criteria for selecting ISI plants location. The capacity utilization rate is within a reasonable level between 87% - 90%. 2. Results show that increasing EAF ratio is more effective to conserve energy and reduce emission than tax and EFE