Measuring the Potential Impact of Mitigation Policies in Indonesia: The Early Finding

Marissa Malahayati*, Toshihiko Masui National Institute for Environmental Studies (NIES)

*) correspondence: marissa.malahayati@nies.go.jp

Indicators	RAN-GRK		Indonesia NDC				
Target Year	2020		2030				
Emission	Voluntary: 26%	Voluntary: 29%					
Reduction Target	Involuntary: 41	Involuntary: 41%					
BaU emission	2020:	1791	2020:	1980	Mton		
projection	MtCO2eq		CO2eq				
	2030:	2881	2030:	2869	Mton		
	MtCO2eq		CO2eq				

Code	Sector	Code	Sector	Code	Sector	Code	Sector					
1	Paddy	14	Natural gas mining	27	other industry	35	amusement and					
							telecommunication					
2	Corn	15	Other mining	28	Electricity	36	Financial Services					
3	Cassava	16	Food, beverage and tobacco	28a	Electricity- coal pp.	37a	Public services-Gove		$ELE_i = \sum ELE$	$E_i \cdot \frac{q_{ele_i}}{\sum q_i}$	The	
4	other	17	Textile, foot and	28b	Electricity- oil pp	37b	Public services-private	2		Ъ Чеle _i	ine a	isaggregation is
	agriculture		leather						q _{elei} . Droportion	o of	basea	on the ration of
5	Rubber	18	Processed wood products	28c	Electricity- gas pp	38	Other Services		$\sum_{i=1}^{n} \sum_{j=1}^{n} Proportion$	1 01	electri	icity production
6	Palm oil	19	Pulp and Paper	28d	Electricity-				electricity produc	ction	gaine	d from the official
_			Products, and print		renewable pp				(GVVH)		otatiot	io
7	Other	20	Petroleum	28e	Electricity- biomass	r			$\sum ELE_i$: Electricit	ty output	Slalisl	
	Plantation		refineries						in sector i			
8	Livestock	21	Chemical industry	29	Gas							
9	wood	22	fertilizer and pesticide	30	Water supply							
10	other forest	23	non-mental ind	31	Waste and recycling services							
11	Marine and	24	Cement	32	building and							
	fishery				construction							
12	Coal mining	25	Iron and steel	33	Transportation							
13	Crude oil mining	26	metal based	34	Trade, hotel,							
			industry		restaurant							
D	ramot	or	Sottin					Year	Population (Million	Growth	/year	Notes
ГС	aramet	EI	Seung	9			-	0040			<u> </u>	
		_						2010	238.5	1.3	3%-1.4%	Using BPS (2013) but the
The	e GDP pro	jec	tion→ 2010)-201	7 are from th	าย						ratio is extrapolated from
act	ual data 🖸	201	8-2030 are i	nroie	ection that de	cide	4					BPS (2018)
fror	n aovorom					5 00		2015	255 6		1 1%	
1101	ngovernin	ient	estimated,	<u>5.1</u>	<u>/o unui 2020,</u>	<u>3.27</u>	<u><u>′0</u></u>	2010	200.0		10/	
unt	il 2030							2020	269.6		170	
								2025	282.5		0.9%	
	_							2030	294.1		0.8%	
Inte	ernational	Pri	ce are assu	imec	the same	/		[2011			
hot			d mitigation	600	naria	/	150 _	I	DAU 150 c		I	The forest area in
Del		all	umingation	206	nanu		18.75×12.	1	150			The lorest area in
							100					CM case is wider
							120 -		120			
Da	aulation n	ral	notion -> In	done	ania haa affia	ial	120 -		120 -			than on RALL hased

(under submission)

Source: Malahayati and Masui, 2019

Conclusion

- The introduction of mitigation scenarios is predicted to create around 2.1% of GDP loss compared to BAU level by 2030 caused by lower household consumption and investment.
- If the sectoral GDP from energy is looked in more detail, the GDP from coal is increasing significantly under the CM scenario. It is because the export of coal is expected to be increased significantly.
- From the energy sector, the supply of coal is projected to be significantly increased. As the mitigation policy is introduced, and the domestic energy demand of coal is reduced while the use of coal for power generation also projected to reach its upper limit, Indonesia is expected to export more coal. This also to compensate for the GDP loss caused by the mitigation policies. Again, this is also a reason why the sectoral GDP for coal is increasing

Method and Scenario

population projection: Population projection 2010-

he method use in this study is Computable	
General Equilibrium (CGE) for the country level.	

on the assumption

of intensification

There are two scenarios in the simulation: : Business as Usual BAU CM : Counter Measure (involve all mitigation list from energy and activities).

The mitigation technology here can come in two main forms: reduce the GHG emission and/or reduce the energy use.

To achieve such reduction, some additional cost that comes from the increase of capital from the related sector will be needed.

significantly under the CM scenario.

- While the coal use is projected to reach its maximum capacity for power generation, the share of renewable energy for power generation is expected to increase significantly, especially because Indonesia has a big potential of hydro and geothermal resources.
- The use of biomass and waste for power generation, although it will increase, it still at a very • low rate compared to other renewables especially hydro and coal.

Further Improvement and Works

- 1. Revise:
 - a) Mitigation technologies assumption
 - b) Data update (e.g. fuel shift mechanism, energy efficiency in the household, international price)
- 2. Improvement:
 - a) Bring the LUCF) part run simultaneously with other sectors
 - b) Add more detail on the mitigation technologies.
 - c) The further mitigation target; Indonesia plan to make a further reduction (41% from BAU level in 2030 by foreign help).
- 3. Longer analysis period \rightarrow long term target and SDGs
- 4. Comparison study to other Asia countries, especially in Southeast Asia.