Battelle The Business of Innovation

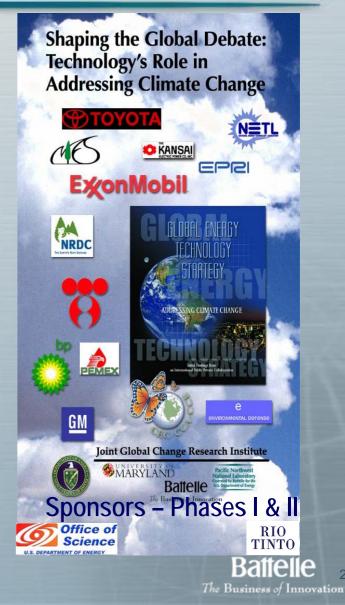
EMF22 Transition Scenarios

Jae Edmonds, Leon Clarke, Marshall Wise, Joshua Lurz Joint Global Change Research Institute

December 12, 2006

PNWD-SA-7654

Global Energy Technology Strategy Program


Acknowledgements

 Thanks to EMF-22 and to John Weyant in particular for making this happen and for the opportunity to participate.

GTSP

Technology Strategy

- Thanks to the team: Leon, Marshall and Josh.
- Thanks to the sponsors of the Global Energy Technology Strategy Program (GTSP) for research support.

- Most of the work that we have all done has been to explore the implications of simple, idealized regimes that stabilize greenhouse gas concentrations and/or climate.
- The real world is unlikely to be so neat and tidy.
- To the extent that the idealized stabilization scenarios are exploring a world with perfect where, when, and what flexibility, reported costs are minimized.
- By definition of an optimum, to the extent that the world is non-optimal, costs will be higher.

Battelle 3 The Business of Innovation

Background (2)

GTSP

- There is only one idealized world.
- There are an infinite number of possible inefficient worlds. Which to choose?
- Two interesting questions arise:
 - 1. What are the physical, energy, agriculture-land-use, and economic implications of emissions mitigation **proposals under serious consideration?**
 - 2. What are the physical, energy, agriculture-land-use, and economic implications of general "second-best" emissions mitigation measures?
- Our work in support of the Pocantioc process explored the first type of issue. (Hugh Pitcher's presentation to EMF-22 in Seville.)

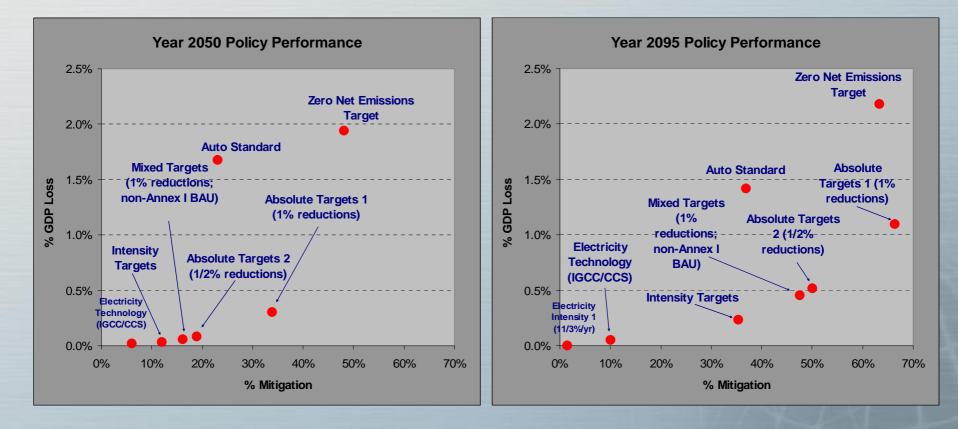
The Business of Innovation

Policies and Measures Trading Cases

Regions	2005 to 2020	2020 to 2035	post 2035
SIONS TRADING CASES			
bsolute Targets 1 (1% reductions)			
US/Australia	Stabilize @ 2005	reduce 1%/yr after 2020	reduce 1%/yr after 2020
Other Annex I	-10% from 2005	reduce 1%/yr after 2020	reduce 1%/yr after 2020
DCs w GDP/cap < poorest Annex I	No Limit	No limit	No limit
DCs w GDP/cap > poorest Annex I	No Limit	Stabilize emissions 1 period; reudce 1%/yr after	Stabilize emissions 1 perio reudce 1%/yr after
bsolute Targets 2 ($^{1}/_{2}\%$ reductions)			
US/Australia	Stabilize @ 2005	reduce ¹ / ₂ %/yr after 2020	reduce ¹ / ₂ %/yr after 2020
Other Annex I	Stabilize @ 2005	reduce $\frac{1}{2}$ %/yr after 2020	reduce ¹ / ₂ %/yr after 2020
non-Annex I w GDP/cap < poorest Annex I	No Limit	No limit	No limit
		Stabilize emissions 1 period;	Stabilize emissions 1 perio
non-Annex I w GDP/cap > poorest Annex I	No Limit	reudce ¹ / ₂ %/yr after	reudce $\frac{1}{2}$ %/yr after
itensity Targets			
Annex I	Reduce GHG/GDP 2%/yr	Reduce GHG/GDP 2%/yr	Reduce GHG/GDP 2%/y
non-Annex I	Reduce GHG/GDP ² / ₃ %/yr	Reduce GHG/GDP 1 ¹ / ₃ %/yr	Reduce GHG/GDP 2%/y
lixed Targets (1% reductions; non-Annex I BA	•		
US/Australia	Stabilize @ 2005	reduce 1%/yr after 2020	reduce 1%/yr after 2020
Other Annex I	-10% from 2005 by 2020	reduce 1%/yr after 2020	reduce 1%/yr after 2020
	, <u>,</u>		
non-Annex I w GDP/cap < poorest Annex I	No Limit	No limit	No limit

Order of Regional Participation

2005	2020	2035	2050	2065	2080	2095
USA	USA	USA	USA	USA	USA	USA
Canada	Canada	Canada	Canada	Canada	Canada	Canada
W. Europe	W. Europe					
E. Europe	E. Europe					
FSU	FSU	FSU	FSU	FSU	FSU	FSU
Japan	Japan	Japan	Japan	Japan	Japan	Japan
Australia & NZ	Australia & NZ					
		Korea	Korea	Korea	Korea	Korea
		China	China	China	China	China
		Latin America	Latin America	Latin America	Latin America	Latin America
		Mideast	Mideast	Mideast	Mideast	Mideast
			Other SE Asia	Other SE Asia	Other SE Asia	Other SE Asia
			India	India	India	India
				Africa	Africa	Africa
					A REAL PROPERTY OF THE OWNER OF	NAMES OF TAXABLE PARTY AND INC.


Policies and Measures Regulatory Cases

Reduce GHG/kWh 1 ¹ / ₃ %/yr	Reduce GHG/kWh 1 ¹ / ₃ %/yr	Reduce GHG/kWh 1 ¹ / ₃ %/yr
ex I No Limit	No Limit	No Limit
ex I BAU	reduce GHG/kWh 1%/yr after 2020	reduce 1%/yr after 2020
-	•	Reduce GHG/kWh 2 %/yr
ex I No Limit	No Limit	No Limit
ex I BAU	reduce GHG/kWh 2%/yr after 2020	reduce GHG/kWh 2%/yr afte 2020
50% of now appliates ICCC		All new coal elec. IGCC or
or better	better; 50% CCS	better; 100% CCS
	_	
EU standard (140gCO ₂ /km)	Reduce CO ₂ /km 2%/y)	Reduce CO ₂ /km 2%/y)
		All vehicles non-emitting by
No Limit	No Limit	2080
No Limit	No Limit	All power non-emitting by 2065
	ex I No Limit ex I BAU Reduce GHG/kWh 2 %/yr ex I No Limit ex I BAU 50% of new coal elec. IGCC or better EU standard (140gCO ₂ /km)	ex IBAUreduce GHG/kWh 1%/yr after 2020ex IReduce GHG/kWh 2 %/yr No LimitReduce GHG/kWh 2 %/yr No Limit reduce GHG/kWh 2%/yr after 2020ex IBAUZo2050% of new coal elec. IGCC or betterAll new coal elec. IGCC or better; 50% CCSEU standard (140gCO2/km)Reduce CO2/km 2%/y)Reduce CO2/km 2%/y)

Putting the Policies Together

Battelle 8 The Business of Innovation

Background (3)

This presentation begins to explore general "second-best" emissions mitigation measures.

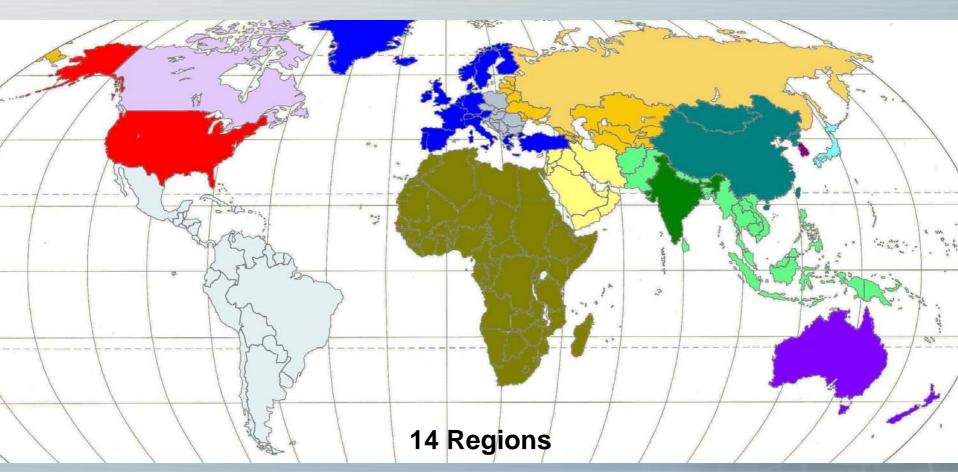
WARNING!

THIS WORK IS PRELIMINARY AND SUBJECT TO CHANGE

Outline of the Research

GTSP

- We know that inefficient "second best" emissions mitigation measures are more expensive than optimal measures—this work has sought to provide some quantitative insights on how expensive several different types of inefficiency might be.
- We looked at 4 stabilization scenario sets
 - Set 1: Idealized—perfect global where, when, and who flexibility
 - Set 2: Graduated accession of nations—the cost of delay
 - Set 3: **Parallel regimes**—the cost of delay and uncoordinated measures
 - Set 4: Inefficient markets—the cost of inefficient
- We will talk about the first **3** of these.



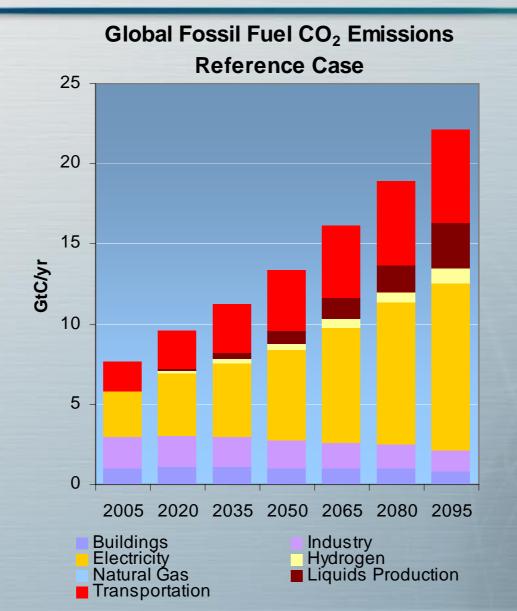
The Reference Scenario

GTSP MiniCAM An Integrated Assessment Model

Emissions, Atmosphere, Climate Emissions: Energy-economy-agriculture-land-use model 15 gaseous emissions—linked to associated human activities 2095 time horizon

GTSP The Reference Scenario Global Energy Global Energy Technology Strategy

Program


History and Reference Case 1600 History **Future** 1400 Global Primary Energy 1850-2100 (Exajoules) 1200 1000 800 600 400 200 0 1900 1950 2000 1850 2050 2100

Battelle 14 The Business of Innovation

The Reference Scenario Global Fossil CO₂ Emissions

GTSP

Global Energy Technology Strategy Program

Battelle 15 The Business of Innovation

Idealize Stabilization Scenario Set 1

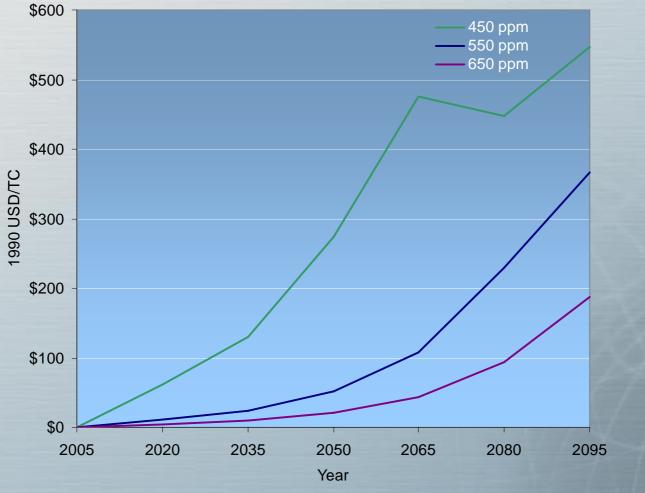
The Emissions Mitigation Measures Idealized Stabilization Scenario Set 1

Stabilize CO₂ concentrations

- -450 ppm, 550 ppm, 650 ppm.
- -Sectoral carbon prices-All EQUAL.
- -Regional carbon prices-All EQUAL.
- -Time path of carbon prices-Peck-Wan-Hotelling.

Notes:

GTSP

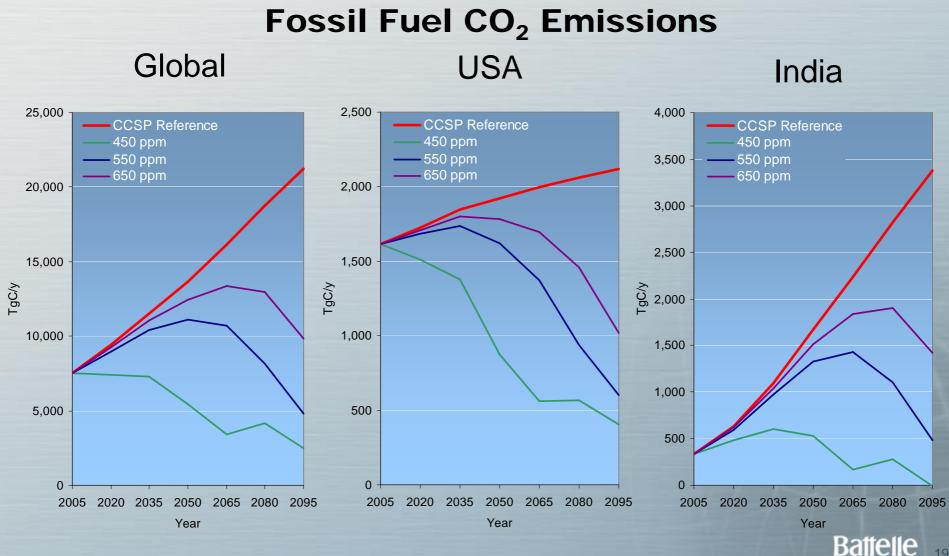

We have chosen CO_2 rather than radiative forcing for simplicity. We have further simplified the analysis by assuming a fixed agriculture-land-use emissions path. Unmanaged ecosystem extent and composition is fixed.

This case sets an economically efficient benchmark for comparison with other cases.

The Business of Innovation

GTSP The Emissions Mitigation Measures Idealized Stabilization Scenario Set 1

Global Price of Carbon



Battelle 18 The Business of Innovation

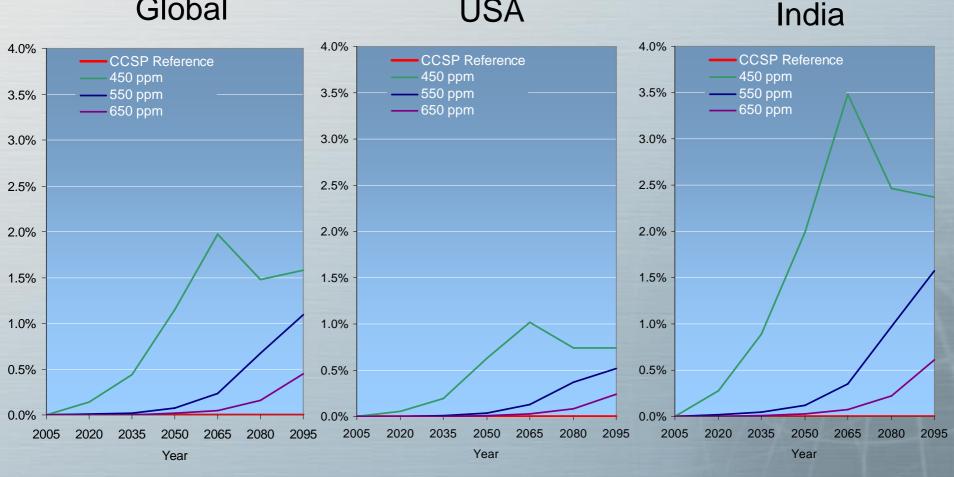
The Emissions Mitigation Measures Idealized Stabilization Scenario Set 1

GTSP

Global Energy Technology Strategy

The Business of Innovation

The Emissions Mitigation Measures Idealized Stabilization Scenario Set 1



USA

Global

GTSP

Global Energy Technology Strategy Program

Battelle The Business of Innovation

Graduated Accession Scenario Set 2

- Stabilize CO₂ concentrations
 - -450 ppm, 550 ppm, 650 ppm.
 - -Sectoral carbon prices-All EQUAL.
 - -Regional carbon prices-All EQUAL.
 - -Time path of carbon prices-Peck-Wan-Hotelling.
 - -Staggered accession based on per capita income.
 - Alternative accession cases—first group enters: 2020-2035, 2035-2050, 2050-2065

• Notes:

GTSP

We assume that all Annex 1 nations participate in an international protocol by 2020 and that others join at different times based on per capita income. Non-Annex 1 participation is keyed to China's entry date.

Battelle 22 The Business of Innovation

Order of Regional Participation (1st NA1 Group Enters 2020-2035)

	2005-2020	2020-2035	2035-2050	2050-2065	2065-2080	2080-2095
	USA	USA	USA	USA	USA	USA
	Australia & NZ	Australia & NZ	Australia & NZ	Australia & NZ	Australia & NZ	Australia & NZ
	Canada	Canada	Canada	Canada	Canada	Canada
	W. Europe	W. Europe	W. Europe	W. Europe	W. Europe	W. Europe
	E. Europe	E. Europe	E. Europe	E. Europe	E. Europe	E. Europe
	Japan	Japan	Japan	Japan	Japan	Japan
	FSU	FSU	FSU	FSU	FSU	FSU
		Korea	Korea	Korea	Korea	Korea
		China	China	China	China	China
		Latin America	Latin America	Latin America	Latin America	Latin America
		Mideast	Mideast	Mideast	Mideast	Mideast
			Other SE Asia	Other SE Asia	Other SE Asia	Other SE Asia
			India	India	India	India
N	A1 1st Grou			Africa	Africa	Africa
	ers 2020-20		USAUSAUSAUSA& NZAustralia & NZAustralia & NZAustralia & NZAustralia & NZdaCanadaCanadaCanadaCanadaCanadaopeW. EuropeW. EuropeW. EuropeW. EuropeopeE. EuropeE. EuropeE. EuropeE. EuropenJapanJapanJapanJapanopaFSUFSUFSUFSUaKoreaKoreaKoreaKoreachinaChinaChinaChinaChinastMideastMideastMideastMideastother SE AsiaOther SE AsiaOther SE AsiaOther SE Asia			

Battelle 23 The Business of Innovation

GTSP 311 Global Energy Technology Strategy Program

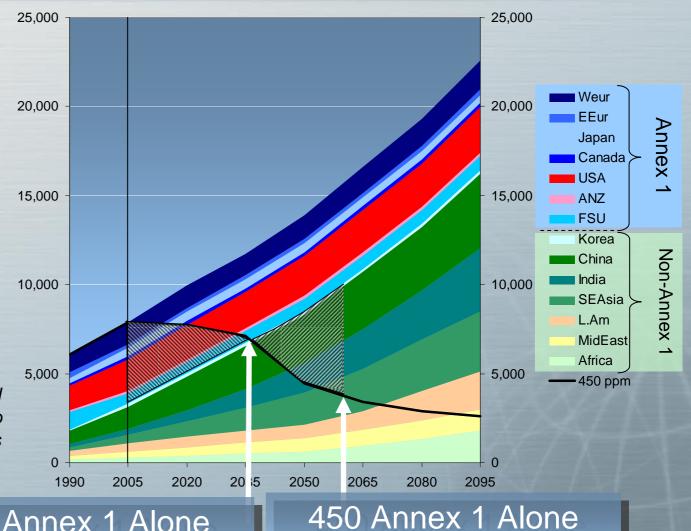
Order of Regional Participation (1st NA1 Group Enters 2035-2050)

	2005-2020	2020-2035	2035-2050	2050-2065	2065-2080	2080-2095
	USA	USA	USA	USA	USA	USA
	Australia & NZ					
	Canada	Canada	Canada	Canada	Canada	Canada
	W. Europe					
	E. Europe					
	Japan	Japan	Japan	Japan	Japan	Japan
	FSU	FSU	FSU	FSU	FSU	FSU
			Korea	Korea	Korea	Korea
			China	China	China	China
			Latin America	Latin America	Latin America	Latin America
			Mideast	Mideast	Mideast	Mideast
				Other SE Asia	Other SE Asia	Other SE Asia
				India	India	India
N	A1 1st Grou				Africa	Africa
	ers 2035-20					V / VE
- 1 1 4	CI3 2000-20	50				
						Battell
						The Business of Im

Order of Regional Participation (1st NA1 Group Enters 2050-2065)

2005-2020	2020-2035	2035-2050	2050-2065	2065-2080	2080-2095
USA	USA	USA	USA	USA	USA
Australia & NZ					
Canada	Canada	Canada	Canada	Canada	Canada
W. Europe					
E. Europe					
Japan	Japan	Japan	Japan	Japan	Japan
FSU	FSU	FSU	FSU	FSU	FSU
			Korea	Korea	Korea
			China	China	China
		/	Latin America	Latin America	Latin America
			Mideast	Mideast	Mideast
				Other SE Asia	Other SE Asia
				India	India
A1 1st Grou	q				Africa
ters 2050-20					X-X-
					Battel The Business of In

25


Point of No Return: Regional Participation (The Richels Effect)

The point of no return for regional participation is the date after which even if Annex 1 emissions fall to zero, CO_2 concentrations cannot be held below a given concentration.

GTSP

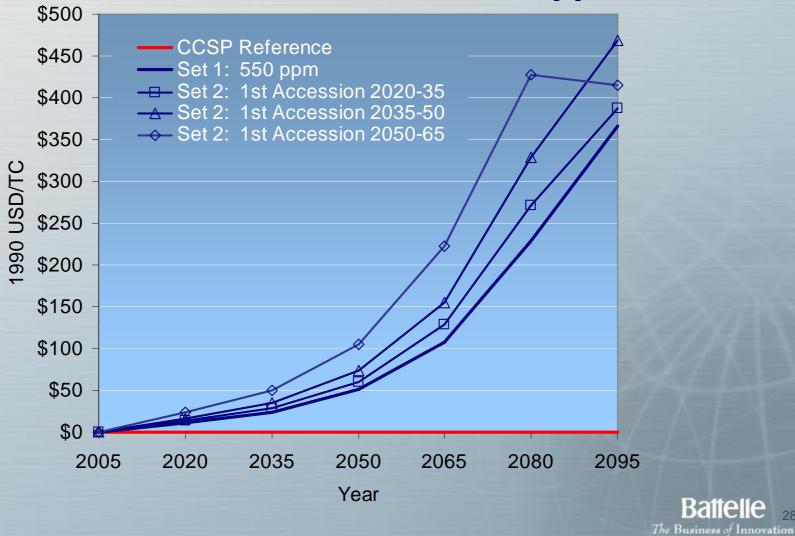
Global Energy Technology Strategy

> The point of no return is 11 later than one might think. Time can be bought by dramatically cutting emissions quickly in participating countries and shifting those emissions to non-participants, but costs rise rapidly to participants, and to the world.

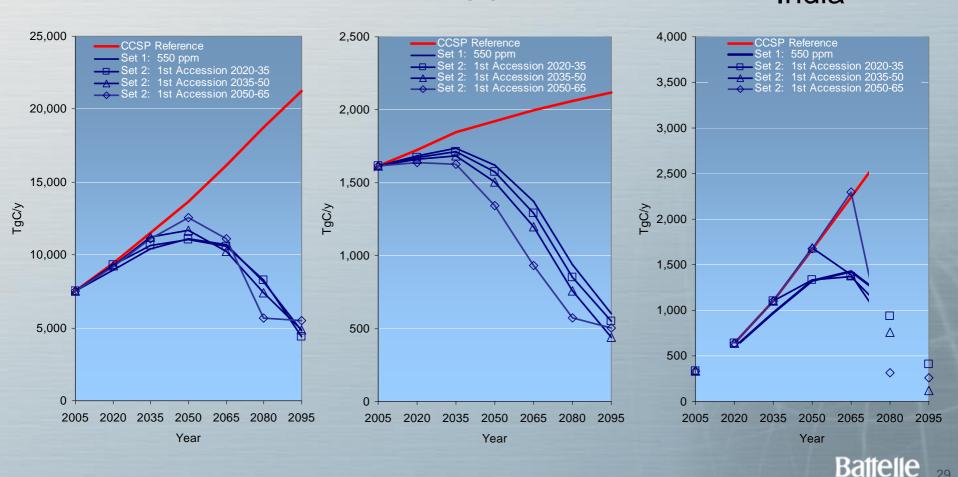
450 Annex 1 Alone Emissions phase down 450 Annex 1 Alone Immediate deep cuts

elle

Innovation



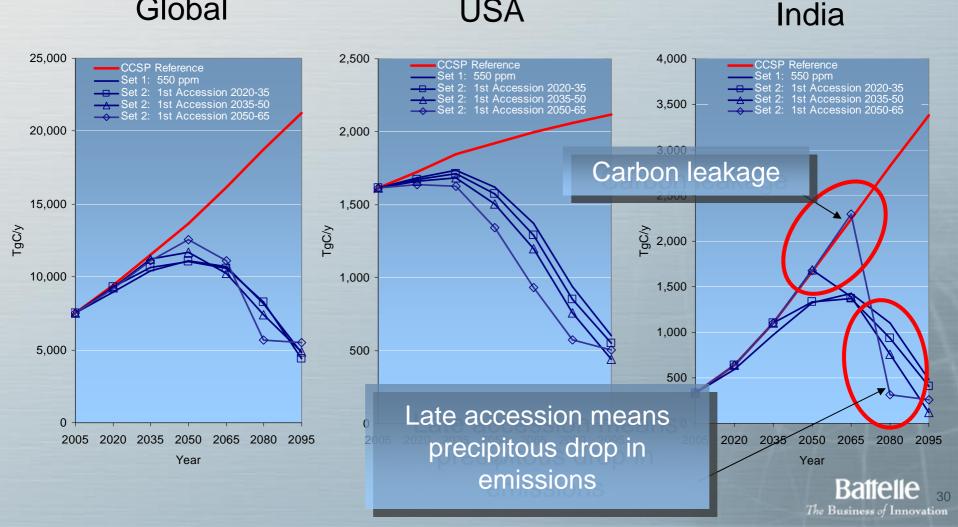
Graduated Accession Scenario Set 2 550 ppm


Global Price of Carbon—550 ppm

GTSP

Global Energy Technology Strategy Program

Fossil Fuel CO2 Emissions—550 ppmGlobalUSAIndia



The Business of Innovation

GTSP

Global Energy Technology Strategy

Fossil Fuel CO2 Emissions—550 ppmGlobalUSAIndi

GTSP

Global Energy Technology Strategy Program

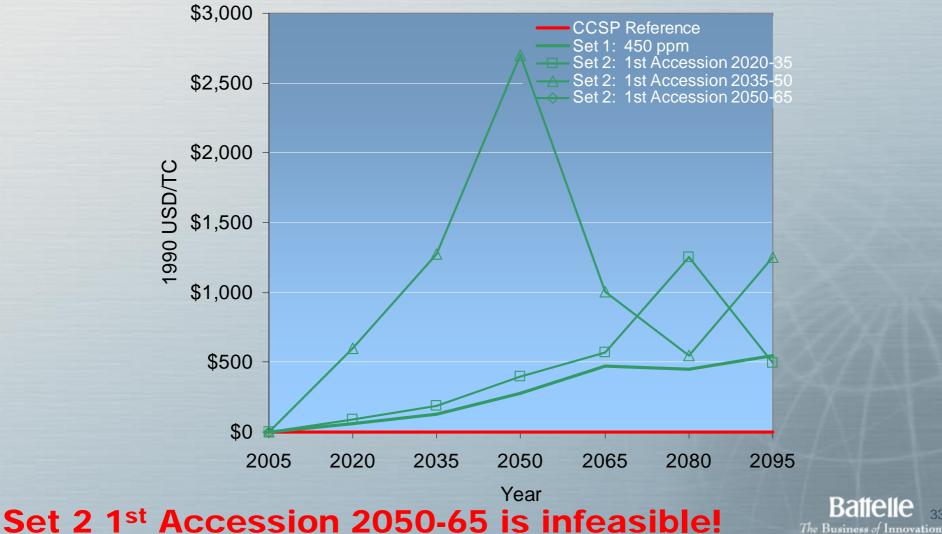
Emissions Mitigation Costs Per GDP—550 ppm

Global USA India 4.0% 4.0% 4.0% **CCSP** Reference CCSP Reference **CCSP** Reference Set 1: 550 ppm Set 1: 550 ppm Set 1: 550 ppm ——— Set 2: 1st Accession 2020-35 ——— Set 2: 1st Accession 2020-35 3.5% 3.5% 3.5% -A-Set 2: 1st Accession 2035-50 —A—Set 2: 1st Accession 2035-50 Set 2: 1st Accession 2050-65 Set 2: 1st Accession 2050-65 — Set 2: 1st Accession 2050-65 3.0% 3.0% 3.0% 2.5% 2.5% 2.5% 2.0% 2.0% 2.0% 1.5% 1.5% 1.5% 1.0% 1.0% 1.0% 0.5% 0.5% 0.5% 0.0% 0.0% 0.0% 2005 2020 2035 2050 2065 2080 2095 2005 2020 2035 2050 2065 2080 2095 2005 2020 2035 2050 2065 2080 2095 Year Year Year

Late accession leads to cost spikes.

Battelle 31

Graduated Accession Scenario Set 2 450 ppm

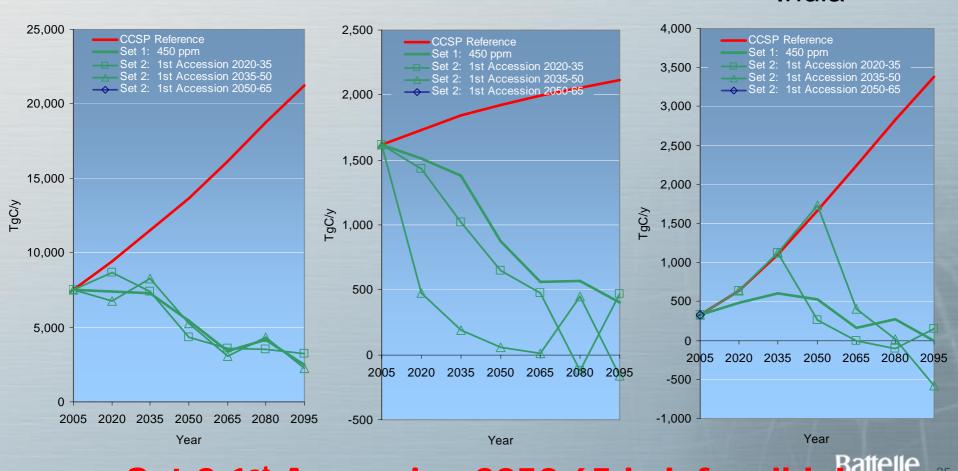

Set 2 1st Accession 2050-65 is infeasible!

Battelle 32 The Business of Innovation

GTSP Global Energy Technology Strategy Program

The Emissions Mitigation Measures Graduated Accession Scenario Set 2

Global Price of Carbon-450 ppm


Global Price of Carbon-450 ppm

GTSP

Global Energy Technology Strategy

Fossil Fuel CO2 Emissions—450 ppmGlobalUSAIndia

Set 2 1st Accession 2050-65 is infeasible siness of Innovation

Fossil Fuel CO2 Emissions—450 ppmGlobalUSAIndia

4,000 25,000 2.500 CCSP Reference CCSP Reference CCSP Reference Set 1: 450 ppm Set 1: 450 ppm Set 1: 450 ppm Set 2: 1st Accession 2020-35 1st Accession 2020-35 Set 2: 1st Accession 2020-35 3,500 Set 2: 1st Accession 2035-50 1st Accession 2035-50 Set 2: 1st Accession 2050-65 1st Accession 2050 Set 2: 2,000 Two periods of delay 3.000 mean 2/3 reduction in 2.500 1,500 **US** emissions by 2,000 2050! gC/y 1,500 1.000 1,000 **Accession delay past** 500 2050 is totally 500 infeasible for 450 0 2020 2035 2050 2065 2080 2005 ppm! 2005 2020 2035 2050 2065 2080 2095 -500

-500

2005 2020 2035 2050 2065 2080 2095 Year

GTSP

Global Energy Technology Strategy

Year

Set 2 1st Accession 2050-65 is infeasible

-1,000

2095

Year

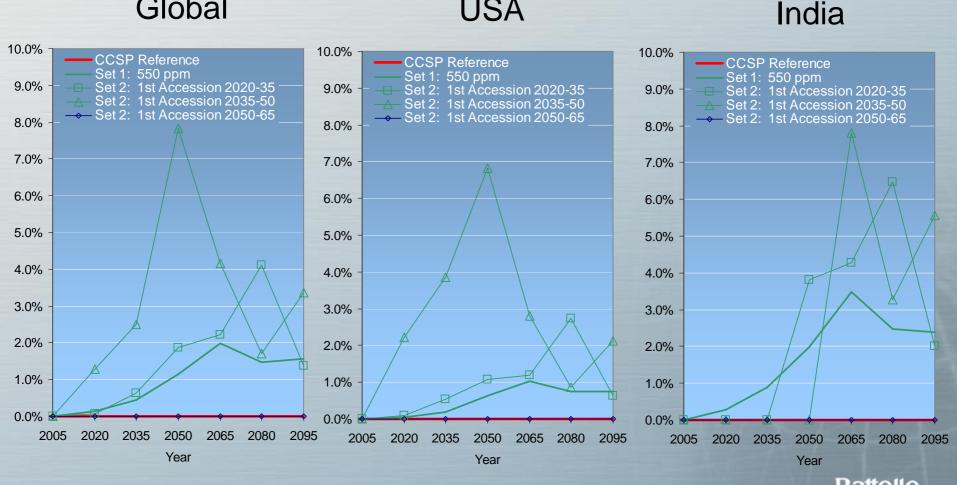
GTSP The Emissions Mitigation Measures Graduated Accession Scenario Set 2

Fossil Fuel CO₂ Emissions—450 ppm

Global **USA** India 25,000 2.500 CSP Reference Negative emissions are the 450 ppm Set ' 1st Accession 2020-35 sion 2020-35 Set 2 result of biomass energy 1st Accession 2035-50 sion 2035-50 Set 2 t 2: 1st Accession 2050-65 sion 2050-65 2,000 20,000 being used indirectly with CCS. 1,500 15,000 2,000 TgC/y ିଥି ପୁରୁ 1,500 နိုင် နိုင် ၂,000 10,000 1.000 500 500 Both US and Indian emissions decline to zero 2005 2020 2035 2050 2065 2080 2095 005 2020 2035 2050 2065 2080 2095 -500 between 2065 and 2080 with Set 2 delays. -1,000 Year Year

Set 2 1st Accession 2050-65 is infeasible sines of Innovation

The Emissions Mitigation Measures Graduated Accession Scenario Set 2


Emissions Mitigation Costs Per GDP-450 ppm

USA

Global

GTSP

Goba Energy Technology Strategy

Set 2 1st Accession 2050-65 is infeasible

Parallel Regimes Scenario Set 3

Stabilize CO₂ concentrations

GTSP

- -450 ppm, 550 ppm, 650 ppm.
- -Sectoral carbon prices-All EQUAL.
- -Regional carbon prices—each region separate.
- -Time path of carbon prices
 - Annex 1 follows Peck-Wan-Hotelling.
 - Other regions carbon price proportional to relative per capita income.
- -Staggered accession based on per capita income.
 - Alternative accession cases—first group enters: 2020-2035, 2035-2050, 2050-2065

Parallel Regimes Set 3 450 ppm

GTSP Global Energy Ecchnology Strategy Program

The Emissions Mitigation Measures Parallel Regimes Scenario Set 3

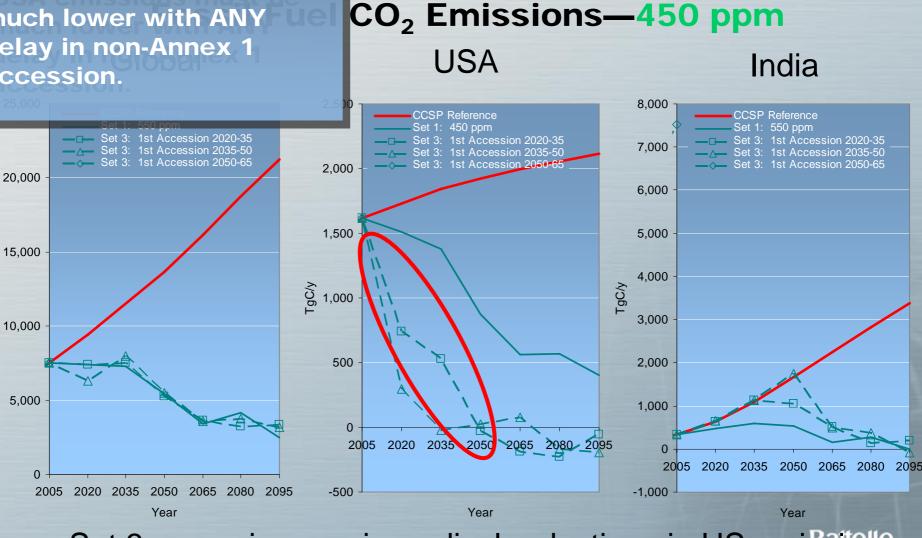
Prices of Carbon—450 ppm

USA

India

Battelle

The Business of Innovation


42

There is little difference in the Set 3 global emissions path from Set 1, however USA emissions must be much lower with ANY delay in non-Annex 1 accession.

TgC/y

There is little difference in the Set 3 global emissions nath from Set 1 however

Set 3 scenarios require radical reductions in US emissions.

Emissions Mitigation Costs Per GDP-450 ppm

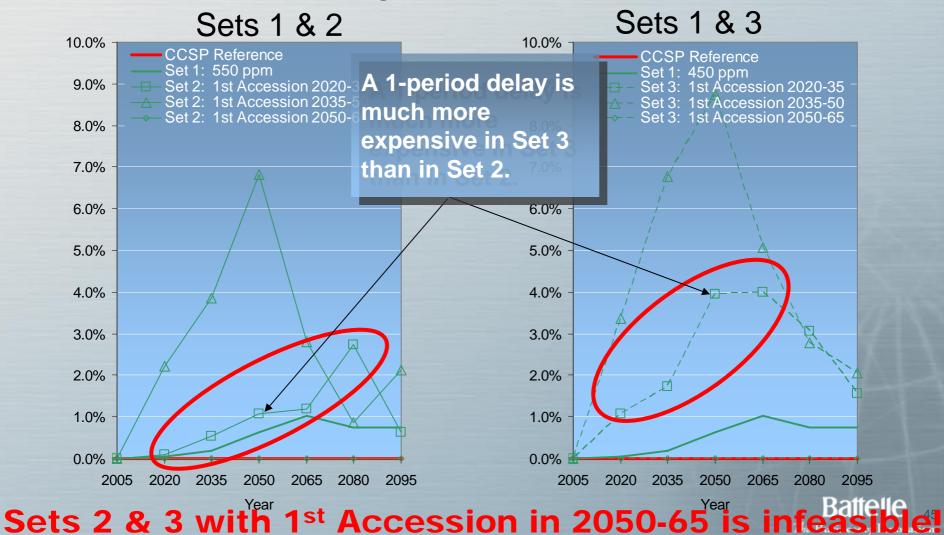

USA

India

Global

GTSP

Global Energy Technology Strategy



Set 3 with 1st Accession in 2050-65 is infeasible.

GTSP

Global Energy Technology Strategy

USA Emissions Mitigation Costs Per GDP-450 ppm

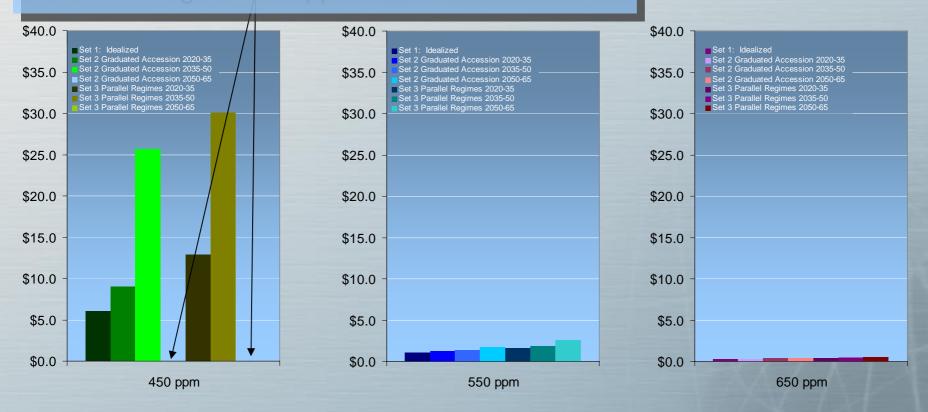
Final Observations

WARNING!

THIS WORK IS PRELIMINARY AND SUBJECT TO CHANGE

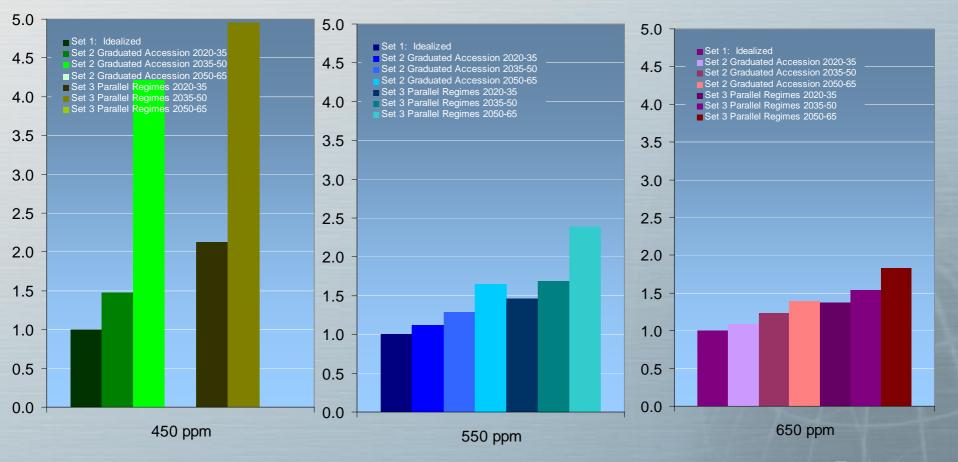
Final Observations

GTSP


- We know that inefficient "second best" emissions mitigation measures are more expensive than optimal measures—this work has sought to provide some quantitative insights on how expensive several different types of inefficiency might be.
- We looked at 4 stabilization scenario sets
 - Set 1: Idealized—perfect global where, when, and who flexibility
 - Set 2: Graduated accession of nations—the cost of delay
 - Set 3: **Parallel regimes**—the cost of delay and uncoordinated measures
 - Set 4: Inefficient markets—the cost of inefficient

The effect of inefficiencies on present discounted costs (1990 USD)

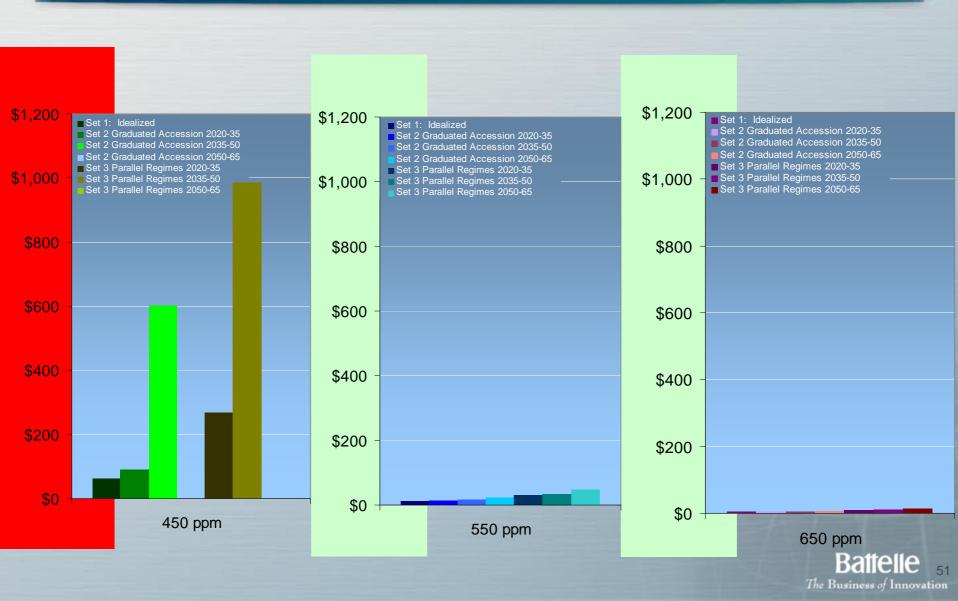
Post 2050 non-Annex 1 accession: MiniCAM can't get to 450 ppm from here!


The dominant determinant of cost is the stabilization level.

Battelle 49 The Business of Innovation

GTSP The effect of inefficiencies on present discounted costs Technology Strategy

Global Energy


The relative effect on cost increases as the stringency of the limitation rises.


All costs normalized to the idealized cost at the concer

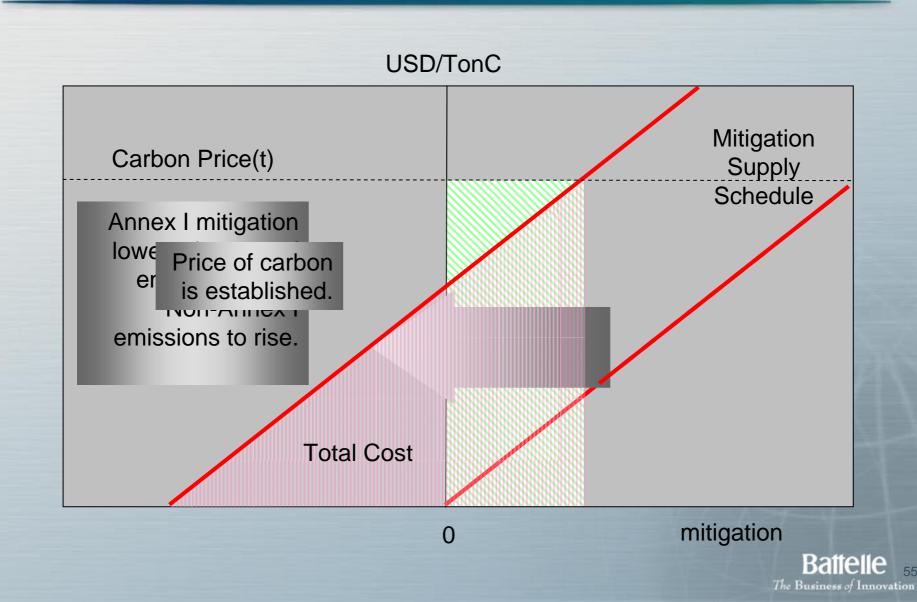
GTSP 2020 prices of carbon (1990 USD) in the USA Global Energy Technology Strategy

Program

GTSP 2020 prices of carbon (1990 USD) in the USA (rescaled)

Final Observations

- "Second best" is just that, second best
- Near-term prices of carbon depend in part on expectations about the future—including international emissions mitigation architectures and long-term stabilization goal.
- Carbon prices are strongly linked to the long-term stabilization objective.
 - The difference between an idealized 450 ppm stabilization and a 650 ppm stabilization is a factor of 6.
- Carbon prices are also linked to long-term emissions mitigation architectures, particularly as the stabilization level declines.
 - At 450 ppm the difference between an idealized regime and parallel emissions architecture with late non-annex 1 accession regime is a factor of 5.
 - At 650 expectations about the future regimes implies something less than a factor of 2 difference with the idealized regime.
 Battelle 53


The Business of Innovation

END

GTSP The Effect of Annex I Mitigation on Non-**Annex I Emissions Mitigation and BAU** Allowances Global Energy echnology Strategy

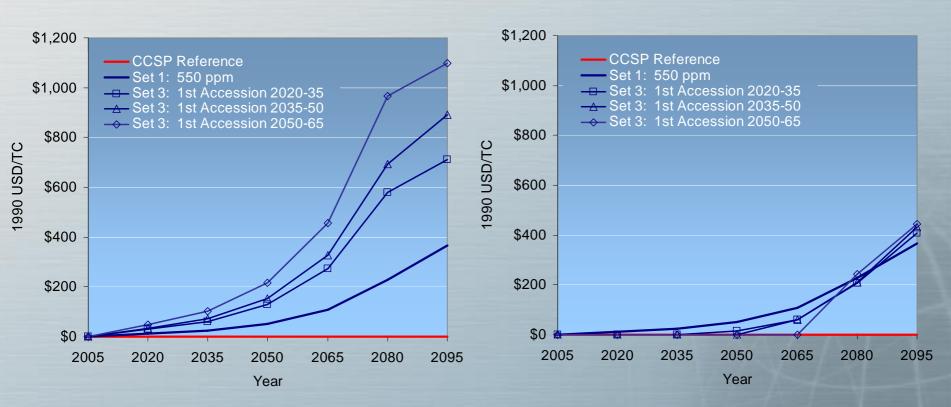
55

Parallel Regimes Set 3 550 ppm

Price of Carbon—550 ppm

USA

GTSP


Global Energy Technology Strategy Program

India

Battelle

The Business of Innovation

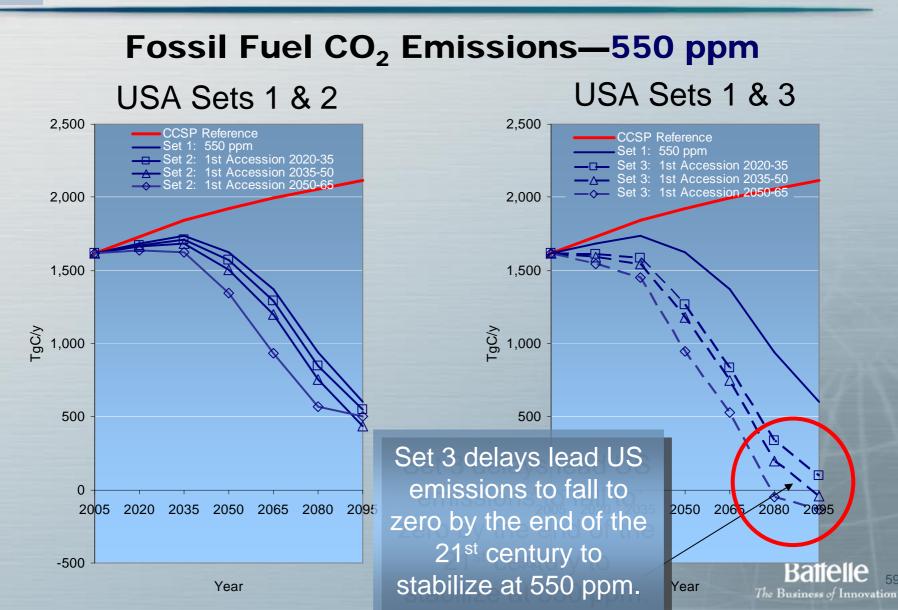
57

GTSP

Goba Energy Technology Strategy Program

Fossil Fuel CO₂ Emissions—550 ppm Global

USA


India

The Business of Innovation

25,000 2,500 4.000 CCSP Reference CCSP Reference CCSP Reference Set 1: 550 ppm Set 1: 550 ppm Set 1: 550 ppm Set 3: 1st Accession 2020-35 Set 3: 1st Accession 2020-35 Set 3: 1st Accession 2020-35 Set 3: 1st Accession 2035-50 Set 3: 1st Accession 2035-50 Set 3: 1st Accession 2035-50 3.500 Set 3: 1st Accession 2050-65 Set 3: 1st Accession 2050-65 Set 3: 1st Accession 2050-65 2,000 20,000 3,000 1.500 2,500 15,000 TgC/y S 2,000 aC/V 1,000 10,000 1,500 500 1,000 5,000 0 500 2005 2020 2035 2050 2065 2080 2095 0 -0 2005 2020 2065 2080 2035 2050 2095-500 2050 2005 2020 2035 2065 2080 2095 Year Year Year

GTSP The Emissions Mitigation Measures Parallel Regimes Scenario Set 3 Technology Strategy

Goba Energy

GTSP

Global Energy Technology Strategy Program

Global

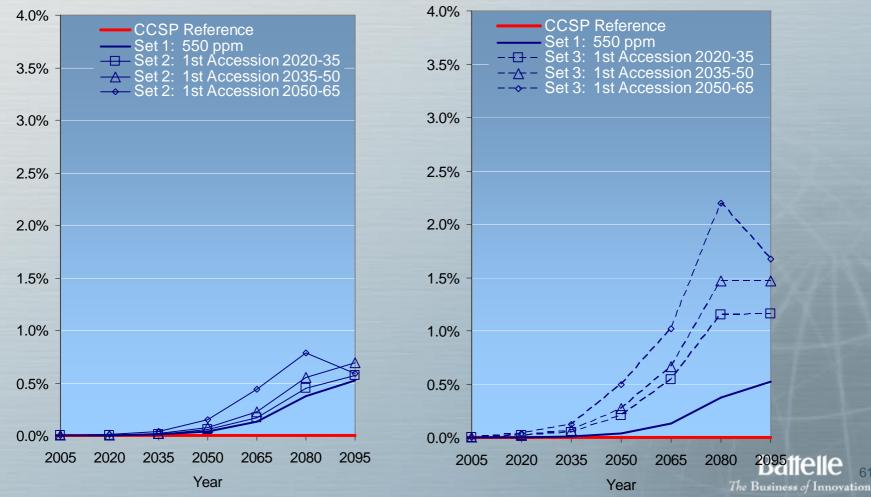
Emissions Mitigation Costs Per GDP—550 ppm

USA

India 4.0% 4.0% 4.0% CCSP Reference CCSP Reference **CCSP** Reference Set 1: 550 ppm Set 1: 550 ppm Set 1: 550 ppm Set 3: 1st Accession 2020-35 – 🗗 – Set 3: 1st Accession 2020-35 - 🗗 – Set 3: 1st Accession 2020-35 3.5% 3.5% 3.5% Set 3: 1st Accession 2035-50 Set 3: 1st Accession 2035-50 Set 3: 1st Accession 2050-65 Set 3: 1st Accession 2050-65 Set 3: 1st Accession 2050-65 3.0% 3.0% 3.0% 2.5% 2.5% 2.5% 2.0% 2.0% 2.0% 1.5% 1.5% 1.5% 1.0% 1.0% 1.0% 0.5% 0.5% 0.5% 0.0% 0.0% 0.0% 2005 2050 2065 2080 2095 2005 2020 2035 2050 2065 2080 2095 2020 2035 2035 2050 2065 2080 2095 2005 2020 Year Year Year

> Battel The Business of Innovation

USA Emissions Mitigation Costs Per GDP-550 ppm


Sets 1 & 3

61

Sets 1 & 2

GTSP

Global Energy Technology Strategy

