
CGE model development (5) Detailed CGE <3> Modeling of Environmental

Toshihiko MASUI

National Institute for Environmental Studies

AIM Training Workshop 2005 NIES, 7-11 November 2005

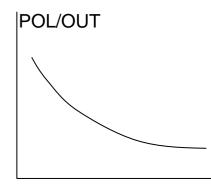
Environmental investment

- Investment to protect environment does not contribute to promote production, but increase of stock to protect environment.
 - Energy input becomes more efficient.
 - Pollutants can be treated more.

INV: total investment

PRO_I: production investment

- ENV_I: environmental investment
- ENV_S: environmental capital stock


POL: pollution emission

OUT: output

$$INV_t = PRO_I_t + ENV_I$$

$$ENV _ S_{t+1} = ENV _ S_t * (1 - \delta) + ENV _ I_t$$

 $\Rightarrow POL_{t+1} / OUT_{t+1} = f(ENV _ S_{t+1})$

ENV_S

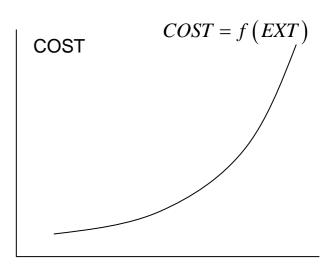
Environmental investment

- Energy efficiency improvement
- I:PE(E) $Q:(Q_EN(E,J)*GR_E(E,J))$ P:RP_EN(E) E.TL:
- I:PCO2#(E) Q:(CO2(E,J)*GR_E(E,J)) P:0 E.TL:
 - By implementing energy-saving investment, GR_E becomes smaller. (energy-saving investment → decrease of energy input → GR_E(E,J) ↓ → decrease of CO2 emission)
- Solid waste and waste water
- I:PW Q:(WST(J)*GR_W(J)) P:0

PW: waste disposal right

WST(J): waste generation in benchmark year

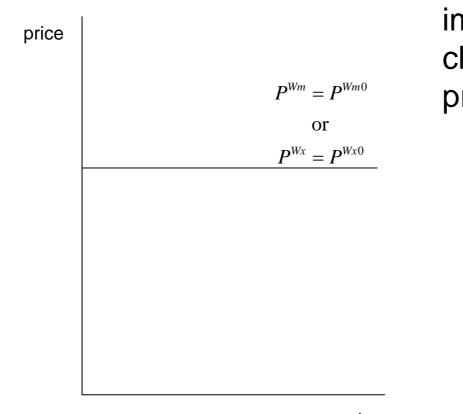
GR_W(J): efficiency of waste generation


- By implementing environmental investment, waste generation per output is reduced (GR_W(J) \downarrow).
- During the iteration process, parameters on technology change are updated according to capacity of environmental protection (stock of capital for environmental protection).

Resource extraction

As fossil fuel resources are extracted, fuel extraction cost becomes higher. This means output to inputs becomes worse.

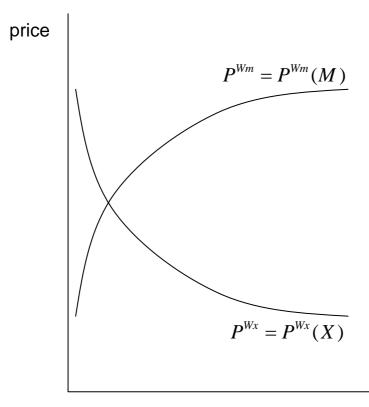
OUT: fuel extraction EXT: total extracted fuel COST: fuel extraction cost $EXT_{t+1} = EXT_t + OUT_t$ $COST_{t+1} = f(EXT_{t+1})$


Resource extraction

O:PY(I) $Q:(V(J,I)*GR_O(J))$

- According to cumulative resource extraction, extraction cost will increase. GR_O(J):
- During the iteration process, values of GR_O(J) are updated.

Small country assumption



Even if quantities of import or export are changed, international price is not changed.

export import

Large country assumption

quantity of import: demand in international market: international price:

quantity of export: supply in international market:

international price:

export import

Large country assumption

Small country assumption: \$CONSTRAINT:IM_QN(N)\$(-IMP(N)) -IMP(N)*IM_QN(N) =E= SUP(N)*(-U(N, "A_IMP"));

Large country assumption \$CONSTRAINT:IM_QN(N)\$(-IMP(N)) (-IMP(N)*IM_QN(N)/IMPO(N)) =E= (PM(N)/PMO(N))**(el_m(N));

```
$CONSTRAINT:EX_QN(I)$(EXP(I))
```

```
(EXP(I) * EX_QN(I) / EXPO(I))
```

```
=E= (PX(I)/PX0(I))**(-el_x(I)) ;
```

```
***0: reference values
el_*: elasticity (el_* > 0)
```


Linkage with end-use model

sectors	energy type	BaU	policy case	additional cost
		MTOE	MTOE	M¥
Steel	coal	100	80	50
	electricity	20	18	8
Transport	gasoline	200	150	100
	electricity	150	180	-
	ł			
Energy demand changes sector by sector & energy by energy are represented in			Additional costs are treated as energy saving investment Related investment goods	

GR_E or GR_E_N.

should be identified.

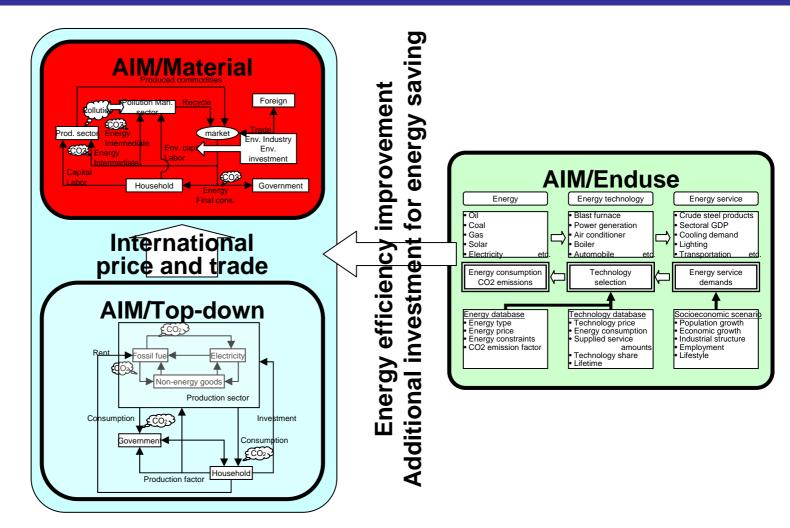
Example of carbon tax in Japan (2003 version)

> Kyoto Protocol

- In Japan, GHG emissions in the 1st commitment period (2008-2012) should be reduced by 6% of those in 1990.
- New Climate Change Policy Programme (2002, Gov. of Japan)

CO2 emissions from energy use: ±0%

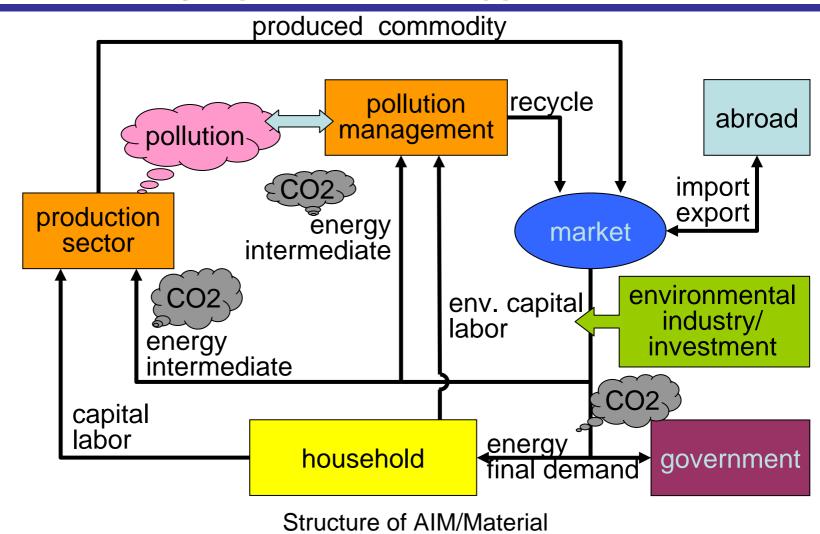
 Reduction by innovative technologies and change of lifestyle: -2%


Others

- CO2 emissions from non-energy use, methane emissions, and nitrous oxide emissions: -0.5%
- Emissions of HFCs, PFCs and SF6: +2.0%
- The use of Sinks: -3.9%

Total 2% of CO2 reduction is assumed to be target.

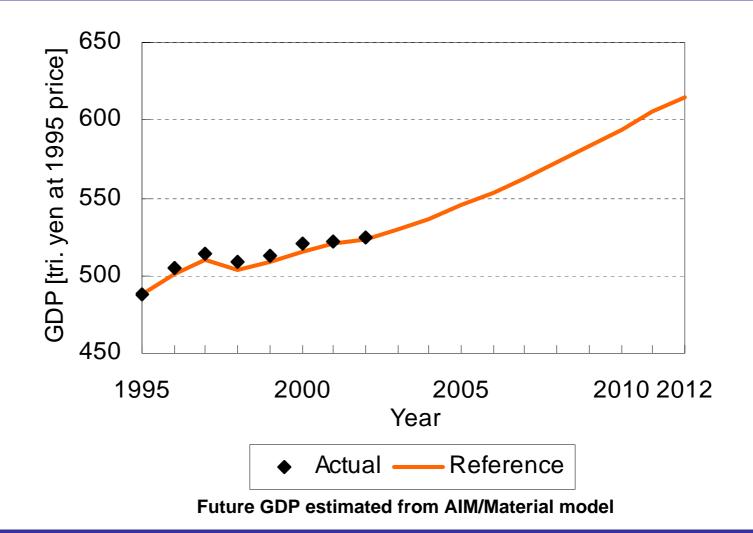
-Country top-down model approach-


-Country top-down model approach-

Features of AIM/Material model

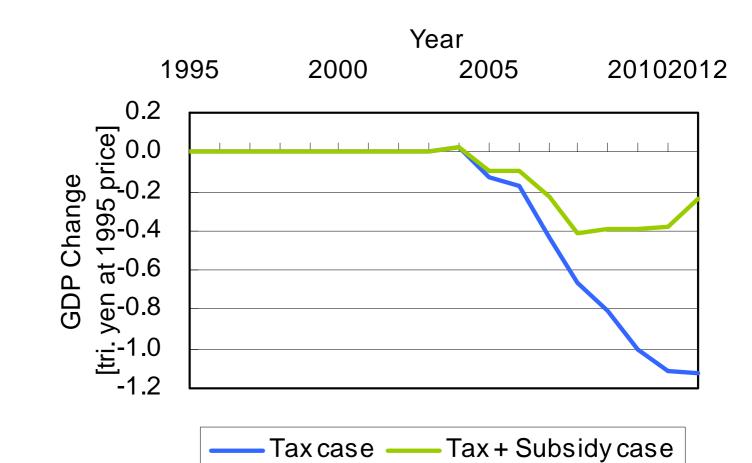
- Model: Computable general equilibrium model
- Country: Japan
- Time period: 1995 to 2012 (recursive dynamic)
- Activity: 41 sectors and 49 commodities
- Solid waste: 18 waste types of industrial waste and 8 types of municipal waste.
 - In this analysis, the constraint on solid waste is not taken into account.
- Other features
 - Both economic balance and material balance are kept.
 - Energy efficiency improvement is given from solution of AIM/End-use model
- Scenarios:
 - Reference Case: Without CO2 constraints.
 - Tax case: CO2 reduction by only introducing carbon tax.
 - Tax + subsidy case: CO2 reduction by introducing carbon tax with subsidy for energy saving equipment.

-Country top-down model approach-


-Country top-down model approach-

Sectors and commodities

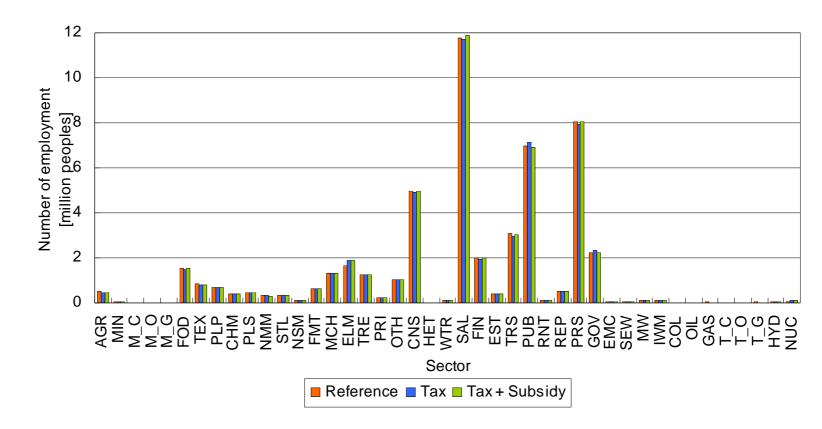
sector	commodity	sector	commodity	
Agriculture, forestry & fisheries		Education, research, medica	I service, health & hygiene, &	
Mining except energy		social welfare		
Coal mining	Coking coal	Goods renting & leasing		
9	Coal for general use, lignite, anthracite	Car & machine repairing		
Crude oil mining		Other service		
Natural gas mining		Government service		
Food		Pollution management devices		
Textile mill products		Sewage service		
Lumber, wood products, pulp, paper & paper products		Municipal solid waste treatment service		
Chemical & allied products		Industrial solid waste treatment service		
Plastic		Manufacture of coal products	Coke	
Ceramic, stone, & clay products			Other coal products	
Iron, steel, non-ferrous metals & products			Paving materials	
Non-ferrous metals & products			Gasoline	
Fabricated metal products			Jet fuel oil	
General machinery			Kerosene	
Electrical machinery, equipment & supplies			Light oil	
Transportation equipment			Heavy oil	
Precision instruments & machinery			Naphtha	
Miscellaneous manufacturing industries			LPG	
Construction			Other petroleum products	
Steam & hot w	vater supply	Manufacture of gas	Town gas	
Water supply		Coal power generation		
Wholesale & retail trade		Oil power generation	Electricity	
Finance & insurance		Gas power generation		
Real estate		Hydro power generation		
Fransportation & communications		Nuclear power generation		



-Country top-down model approach-

-Country top-down model approach-

GDP change compared to the reference case


Model analysis on CO2 reduction policy -Country top-down model approach-

(compared to reference case)

-Country top-down model approach-

Number of employment in the first commitment period

