Data Preparation in Energy-Economy-Agriculture Models

Ron Sands Joint Global Change Research Institute Battelle – PNNL – University of Maryland

AIM Training Workshop 2006

Tsukuba, Japan 18 October 2006

Battelle

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Introduction (1)

- Top-down economic modeling for environmental policy analysis requires several types of data
 - Input-output tables
 - National income accounts
 - Energy balances
 - Energy technology characteristics
 - Agriculture and land use is increasingly important for questions related to climate policy
- Data collection effort depends on questions to be asked
 - Expand detail in sectors of interest and collapse detail in other areas
 - For some questions, especially on a global scale, level of detail provided by GTAP may be sufficient
 - For single-country studies, especially those focused on specific energy sectors, you may want to collect and process local data

Introduction (2)

Importance of physical flows

- Energy
 - Demand for secondary fuels
 - Efficiency of transformation from primary to secondary fuels
 - Implied demand for primary fuels and resulting emissions
- Agricultural products
 - Demand for food in calories
 - Efficiency of transformation from primary agriculture to animal products
 - Implied demand for land
- Coverage of all major classes of greenhouse gas mitigation options
 - Energy efficiency
 - Fuel switching
 - CO₂ capture and storage (CCS)
 - Non-CO₂ greenhouse gases
 - Land management, biofuels, carbon emissions from land use change

Energy-Economy Data

Input-output tables

- Each row is an input to production
- Each column is a production activity or final demand activity (consumption, investment, international trade)
- Can be constructed in either quantity or value terms

National income accounts

- Income must equal expenditure for various accounts: producers, consumers, investment, trade
- Can be expressed in a matrix where row sums equal column sums

Energy balances

- Essentially an input-output table for energy
- Expressed in energy quantities
- Energy technology characteristics
 - Efficiency in physical terms
 - Levelized cost to produce one unit of output (e.g., kWh)

-----Final demand------

Total cost for makers of commodity *j*

National Accounts

Structure of Energy Balance Table

energy inputs (fuels)

production imports exports

electricity generation oil refining coking

energy transformation

sources

agriculture industry transport residential buildings commercial buildings

final consumption

Engineering cost assumptions for electricity generation technologies in SGM-USA (1990 US\$)

			natura	al gas	CO	al		renewables	
		-	single				-		
Parameter	unit	oil	cycle	NGCC	PC	IGCC	nuclear	hydro	wind
Operating in model base year?		yes	yes	no	yes	no	yes	yes	no
Economic assumptions									
fuel price	\$/GJ	4.19	2.26	2.26	0.97	0.97			
interest rate	percent	10%	10%	10%	10%	10%	10%	10%	10%
Capital cost									
purchase cost of capital	\$/kW	500	500	800	1,150	1,401	1,000	1,000	1,200
plant factor	percent	20%	40%	75%	75%	75%	75%	75%	20%
capital lifetime	years	20	20	20	20	20	20	20	20
interest plus depreciation	percent	11.7%	11.7%	11.7%	11.7%	11.7%	11.7%	11.7%	11.7%
levelized capital cost	mills/kWh	33.5	16.8	14.3	20.6	25.0	17.9	17.9	80.5
Fuel cost									
efficiency	percent	32%	36%	50%	32%	41%			
fuel cost per kWh	mills/kWh	47.6	22.9	16.4	10.8	8.6			
Operations and maintenance cost	mills/kWh	2.5	2.5	7.4	7.4	7.4	15.0	5.0	7.4
Levelized cost per kWh (total)	mills/kWh	83.6	42.1	38.1	38.7	41.0	32.9	22.9	87.9
CCS operational in base year?				no	no	no			
capture efficiency	percent			90%	90%	90%			
CO2 captured	kg-CO2/kWh			0.328	0.728	0.711			
capital cost	\$/kg-CO2/h			921	521	305			
O & M cost	mills/kg-CO2			5.20	5.56	2.65			
energy required	kWh/kg-CO2			0.354	0.317	0.194			

Levelized Cost of Electricity as a Function of Carbon Price

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 8

Social Accounting Matrix (SAM) as an Organizing Tool

- Matrix structure to hold all benchmark (base-year) data
- Three major components
 - National income accounts (condensed SAM)
 - Use table (commodity x activity)
 - Make table (activity x commodity)
- Economic models usually have single-output production functions
- Matrix algebra can be used to transform use and make tables so that each activity produces only one commodity

Condensed Social Accounting Matrix (1990 USA)

	activities	commodities	primary factors	enterprises	households	government	capital	rest of world	
activities		GROSS_OUTPUT							
		9,790,599							9,790,5
commodities	INTERMEDIATE_INPUTS				PCONS	GCONS	INVEST	EXPORTS	
	4,269,660				3,760,223	847,785	960,864	543,179	10,381,7 [.]
primary factors	VALUE_ADDED								
	5,520,940								5,520,94
enterprises			OVA						
			1,823,076						1,823,07
nouseholds			LABOR	DIVIDENDS		GTR			
			3,248,246	1,068,577		808,000			5,124,82
government			IBT	CIT	PIT+SSTAX				
			449,618	140,500	1,143,300				1,733,4
capital				RE	PSAV	GSAV		NET_BORROWING	
				613,999	221,300	77,633		47,933	960,86
est of world		IMPORTS							
		591,112							591,1 ⁻

Note: numbers in blue are derived directly from an input-output table

Pacific Northwest National Laboratory U.S. Department of Energy 10

Use and Make Tables

- An input-output table is constructed from a use (input) table and a make (output) table
 - Some statistical agencies provide the original use and make tables
 - Some agencies provide only the combined input-output table
- Use table
 - Looks like an input-output table
 - But there may be more than one production activity for some products (e.g., several ways to generate electricity)

Make table

- Each row is a production activity
- Each column is a product or commodity

1997 energy make table for China (mtoe)

	Gases from							
		Natural			Coal	Refined		
	Crude Oil	Gas	Coal	Coke	Transform	Petroleum I	Electricity	Heat
Oil and Gas Extraction	160.7	21.4						
Coal Mining			713.6					
Coke Ovens				90.3	8 11.7			
Blast Furnaces					13.7			
Petroleum Refineries						164.5		
Petrochemical Industry								
Gas Works		3.9		0.7	,			
Public Electricity Plants							95.8	
Autoproducer Electricity Plants							1.7	
Heat Plants								28.1
CHP Plants								
Production by Fuel	160.7	25.3	713.6	91.0) 25.4	164.5	97.6	28.1

Hybrid Use Table

- Combines economic input-output data, energy balances, and energy technology characteristics into one table
- Sequence of calculations (used in SGM model)
 - Aggregate economic use and make tables to desired level of detail
 - Construct energy use and make tables from energy balance tables
 - Check that energy technology data is consistent with energy balances
 - Replace energy rows of economic use table with corresponding data from energy balances (hybrid use table)
 - Re-balance hybrid table in value terms so that row sums match column sums
 - Insert energy technology data

Structure of Hybrid Use Table

Hybrid Use Table with Steel Technologies

Pacific Northwest National Laboratory U.S. Department of Energy 15

Documentation for Second Generation Model

SGM documentation can be found at:

http://www.epa.gov/air/sgm-sab.html

The Second Generation Model: Model Description and Theory, PNNL-15432 (PDF, 51 pp, 1566 KB)

The Second Generation Model: Data, Parameters, and Implementation, PNNL-15431 (PDF, 39 pp, 356 KB)

The Second Generation Model: Future Directions for Model Development, PNNL-15437 (PDF, 10 pp, 126 KB)

Agriculture-Forestry Data

Agriculture-Forestry Data

- Food balances
- Land use data
- Forest production
- Following slides provide a brief introduction to this data at a global level
- United Nations Food and Agriculture Organization (FAO) is the primary source of data
- Top-down general equilibrium models are being extended to include agriculture and forestry

1990 Global Food Balance (kcal per person per day)

	Activity							
		Processed	Animal			Other	Stock	Total
_	Crops	Crops	Products	_	Food	Uses	Change	Production
Crops	344	748	1,041		1,726	51	49	3,959
Processed Crops	0	0	2		532	80	-4	609
Animal Products	0	0	37		382	38	0	457

Food Consumption by AgLU Region

Land Use (without carbon policy)

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 20

Summary

- Benchmark data sets for top-down general equilibrium models can be represented as social accounting matrices (SAMs)
- The SAM structure is flexible so that detail can be expanded in areas of interest and collapsed elsewhere
- Bottom-up energy technology information can be placed in a SAM to represent interaction with the rest of the economy
- Modelers are working to include agricultural and forestry production in general equilibrium models
 - Important for analysis of climate policy
 - GHG emissions from agriculture
 - CO₂ sequestration in forests and soils
 - Climate impacts on agriculture and forest production
 - Potential for biofuels
 - GTAP effort
 - Energy Modeling Forum (EMF-22) land use subgroup