Implications of carbon reduction targets for energy systems development: Case of selected South East Asian countries

Ram M. Shrestha, Migara Liyanage, Wongkot Wongsapai Charles O.P. Marpaung and Phan M.Q. Binh

> Asian Institute of Technology Thailand

10th AIM International Workshop 10-12 March 2005 Tsukuba, Japan

Presentation Outline

- AIM related activities at AIT
- Comparative analysis of selected South East Asian Countries on implications of carbon reduction targets in energy systems development
 - Introduction
 - Primary Energy Supply
 - Environmental Implications
 - Conclusions

AIM related activities at AIT

Models and countries covered

- **Types of models used:**
 - AIM/Enduse
 - AIM/Local
 - AIM/CGE
- Countries covered:
 - Thailand
 - Vietnam
 - Sri Lanka
 - Indonesia

Issues Analyzed

AIM Models	Countries	Issues analyzed				
		For all countries (Indonesia, Sri Lanka, Thailand and				
I. Enduse	All	Vietnam):				
		Implications of CO ₂ and SO ₂ emission reduction targets				
		Implications of carbon tax and sulfur tax				
		<i>Country Specific:</i> Energy, environmental and cost implications of limitations on natural gas availability in Thailand				
		Energy and environmental implications of biomass use for cooking and electricity generation in Sri Lanka				
		Analysis of biofuel in transport sector in Thailand				
		Analysis of selected policy issues in transport sector (ie. Emission charge) of Bangkok (For RISPO Project)				
II. Local	Thailand	Carbon tax and sulfur tax on energy systems				
	Vietnam	CO ₂ and SO ₂ emission reduction targets				
III. CGE	Thailand	Implications of C-tax on Thai economy (Preliminary)				

Implications of carbon reduction targets for energy systems development

Introduction

- Countries covered:
 - Indonesia, Thailand and Vietnam
- Study period:
 - 2000 to 2030
- **Scenarios considered**:
 - Base Case
 - CO₂ Emissions Reduction Targets:
 - 5% (ER5)
 10% (ER10)
 Reduction from the base case during 2010-2030
 15% (ER15)

GDP, Total primary energy supply and CO₂ emissions of selected countries in 2002

						Energy
					Emissions	Intensity
			Total Primary	CO ₂	Intensity	TPES/GDP
	Population	GDP (billion	Energy	Emissions	CO2/GDP (kg-	(toe/1000
Country	(million)	95US\$)	Supply (Mtoe)	(Mton)	CO ₂ /95US\$)	US\$)
Indonesia	212	224	156	303	1.35	0.70
Thailand	62	185	83	179	0.97	0.45
Vietnam	80	33	43	57	1.71	1.28
China	1280	1208	1229	3270	2.71	1.02
India	1049	517	538	1016	1.97	1.04
Japan	127	5715	517	1207	0.21	0.09
Korea	48	681	203	451	0.66	0.30
Asia*	1988	1857	1184	2257	1.22	0.64

* Excludes China and Japan

Source: IEA, 2004

- Among the 3 South-East Asian countries under the study:
 - Emissions intensity is lowest in Thailand
 - Energy intensity is highest in Vietnam

CO₂ Intensity (CO₂ per GDP_{MER})

Source: IEA, 2004

- **CO**₂ intensity:
 - Relatively high in Indonesia and Thailand.
 - Increasing in all 3 countries (Indonesia, Thailand and Vietnam).

I. Effects on Primary Energy Requirement

Primary Energy Supply during 2000-2030 in the base case

Primary Energy Supply, Mtoe

Indonesia:	Y2000 118	Y2030 276
Thailand:	66	251
Vietnam:	17	155

Primary Energy Supply Structure in Base case

From 2000 to 2030:

Indonesia,

- Coal: 15 to 21%
- Nat.: gas 1 8.9 to 9.2%
- Oil: 1 50 to 53%
- 🔹 Biomass: 📕 19 to 6%

Thailand, Coal: 17 to 34% Nat. gas: 123 to 29% Biomass: 18 to 5% Oil: 141 to 30%

Vietnam,

- Biomass: 1 5 to 18 %
- Coal: 30 to 15%
- Oil: 43 to 41%
- Nat. gas remain constant at 12%

Changes in Primary Energy Supply Structure due to Emission Reduction Targets

ER5 ER10 ER15

Fuel substitution in ER:

- Indonesia:
 Coal and oil to biomass and gas
- Thailand: ER5: coal to biomass
 ER10 & 15: coal to biomass & nat. gas
 - Vietnam: ER5: oil, natural gas to primary electricity ER10 & 15: coal, oil, natural gas to biomass and primary electricity

Energy Import Dependency (EID)

There are no energy imports in Indonesia

Base case:

EID increases rapidly from 46% in 2000 to 86% in 2030 Thailand due to growing energy demand and inadequate domestic resources.

ER cases:

- EID decreases from 74% in base case to 68% in ER5 in Thailand due to increased domestic biomass use and increases to 73% in ER15, due to increased use of imported natural gas.
- EID decreases in Vietnam to 49% in ER15 due to increased use of biomass and primary electricity.

Role of Renewable Energy Technologies in Thailand

- In base case, the share of Renewable Energy Technologies (RETs) will reduce from 20% in 2000 to 6% in 2030.
- In 2030, the RETS share increases from 6% in base case to about 12% in ER cases.
- The RETs share falls over time as agricultural residue available would be fully used.
- Plantation based biomass is also used in ER cases

Role of Renewable Energy Technologies in Indonesia and Vietnam

- Vietnam RETs:
 - Increase from 16% in 2000 to 28% in 2030 in base case due to increase in hydro power generation.
 - Have an increasing contribution to ER
 - Plantation based biomass is selected
- Indonesia RETs:
 - Decrease from 19% in 2000 to 6% in 2030 in base case
 - Increase the RETs share from 6% in base case to 9% in ER15 in 2030).

II. Environmental Implications

CO₂ Emissions in Base case

AAGR of CO_2 emissions during 2000–2030:

Indonesia: 3.5% (281 to 758 Mton)

Thailand: 5.1% (163 to 726 Mton)

Vietnam: 7.7% (13 to 121 Mton)

Sectoral Contribution to CO₂ Emissions

- Transport sector is the largest contributor in Thailand and Vietnam by 2030
- Similarly, Industry sector in Indonesia

From 2000 to 2030:

Indonesia,

- Power: 1 27 to 29%
- Industry: 1 31 to 36 %
- Transport: 431 to 21%

Thailand,

- Power: 436 to 31%
- Industry: 1 20 to 24%
- Transport: remain unchanged at 36%

Vietnam,

- 🔹 Power: 🖡 22 to 19%
- Industry: 1 28 to 36%
- Transport: 136 to 38%

Sectoral Contribution to Cumulative CO₂ Emissions Reductions During 2000 - 2030

- Sectoral CO2 reductions in ER15 compared to base case during 2010-2030 :
 - Indonesia: 64% from power & 36% from Industrial
 - Thailand: 78% from power, 20% from Industrial and 2% from transport
 - Vietnam: 66% from power, 26% from transport

SO₂ reduction under CO₂ ER targets

 % SO₂ reduction largest in Thailand

At ER15, SO₂ is reduced by 41% in Thailand and by 14% in Indonesia.

NO_x reduction under CO₂ ER targets

 Indonesia has highest NO_x reduction at ER10 and ER15.

 At ER15 NO_x was reduced by 13% in Indonesia, 9% in Thailand and 6% in Vietnam.

Conclusions

- Biomass produced on a sustainable basis play a key role in CO₂ emissions reduction in all 3 countries
- The power sector will have the highest contribution to ER in all 3 countries (78% in Thailand, 66% in Vietnam and 64% in Indonesia)
- Availability of biomass is found to limit its role at higher CO₂ reduction targets in Thailand
- SO₂ emissions fall significantly in CO₂ ER cases in Indonesia and Thailand
- Indonesia and Thailand would enjoy a higher percentage of NO_x reduction than Vietnam at ER15

Future AIM Activities at AIT

- Multi gas emission inventory of Thailand
- AIM/Enduse Model development for Cambodia and Nepal
- AIM/Local Model development for Indonesia
- Refinement of AIM/CGE model for Thailand
- Dissemination of results

SO₂ Emissions in Base case

AAGR of SO₂ emissions during 2000 – 2030:

Indonesia: 559 to 1,543 kton (3.6%)

Thailand: 240 to 1,873 kton (7.1%)

Vietnam: 80 to 645 kton (7.5%)

NO_x Emissions in Base case

AAGR of NO_x emissions during 2000 – 2030:

Indonesia: 1,614 to 4,598(3.8%)

Thailand: 390 to 1538 kton (4.7%)

Vietnam: 80 to 722 kton (7.9%)