
Water management model development in SDB

Yasuaki Hijioka, Yuzuru Matsuoka, Kiyoshi Takahashi, Hideo Harasawa, Hiroki Mori

NIES and Kyoto University

10th AIM Workshop, NIES, 10-12 March 2005

Objectives of water management model development in SDB

- Focus on water demand and water supply and sanitation services
 - Water demand
 - ✓ Sectoral assessment: Domestic, Industry, Agriculture
 - ✓ Water savings: Technology, System, Institution
 - Access to improved water supply and sanitation
 - ✓ Millennium Development Goals 7, Target 10: Halve by 2015 the proportion of people without sustainable access to safe drinking water and basic sanitation
 - ✓ VISION 21: By 2025 to provide water, sanitation, and hygiene for all
 - Current situation of access to safe water and sanitation
 - Around 1.1 billion people globally do not have access to improved water supply, whereas 2.4 billion people do not have access to any type of improved sanitation. About 2 million people die every year due to diarrhoeal diseases.
- Provision of optimal sustainable development path utilizing SDB

Category of "Improved" and "Not improved" water supply and sanitation technologies

BOX 1.5 WATER SUPPLY AND SANITATION TECHNOLOGIES CONSIDERED TO BE "IMPROVED" AND THOSE CONSIDERED TO BE "NOT IMPROVED"

The following technologies were considered "improved":

Water supply Sanitation

Household connection Connection to a public sewer
Public standpipe Connection to septic system

Borehole Pour-flush latrine
Protected dug well Simple pit latrine

Protected spring Ventilated improved pit latrine

Rainwater collection

The following technologies were considered "not improved":

Water supply Sanitation

Unprotected well Service or bucket latrines

Unprotected spring (where excreta are manually removed)

Vendor-provided water Public latrines
Bottled water Open latrine

Tanker truck provision of water

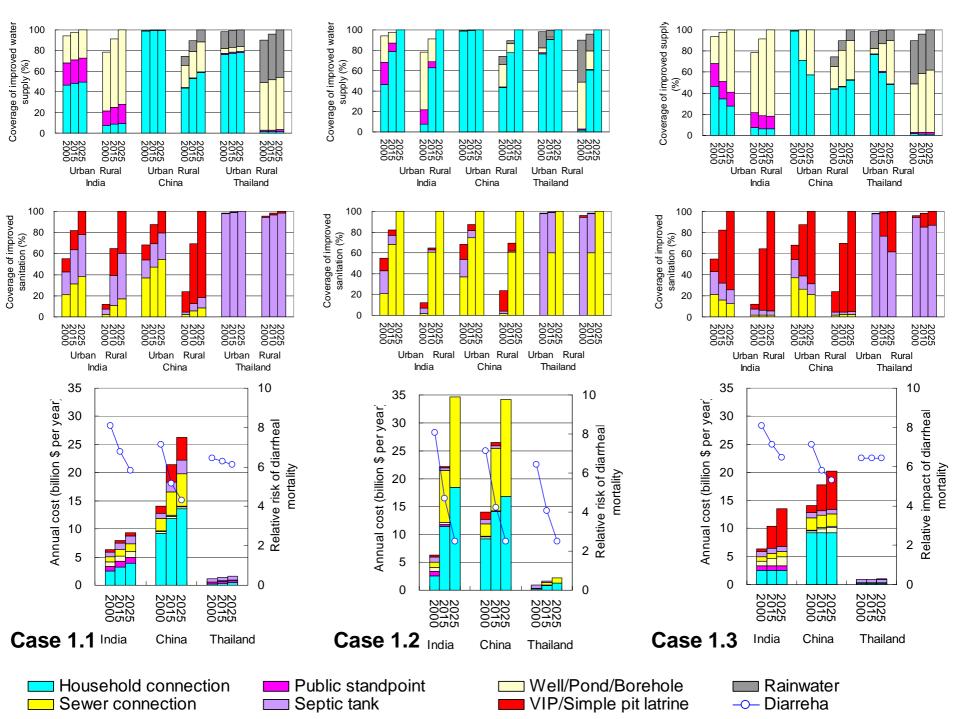
' Not considered "improved' because of limitations concerning the potential quantity of supplied water, not the quality.

⁴ Global Water Supply and Sanitation Assessment 2000 Report

Example of water management assessment

- Target:
 - Halve by 2015 the proportion of people without sustainable access to safe water and sanitation
 - By 2025 to provide water, sanitation, and hygiene for all
- Country: India, China, Thailand
- Output: Country-wise projection
 - Coverage of water supply and sanitation technologies
 - Investment, operation and management cost
 - Water supply (Water volume for domestic use)
 - Health impacts: Diarrhea disease
- Start year: 2000, Target year: 2015, 2025
- Data: GDP, Population, Improved water supply and sanitation data (Coverage, Cost, Unit water use (L/person/day), Potential risk of diarrhoeal mortality based on access to improved water and sanitation)

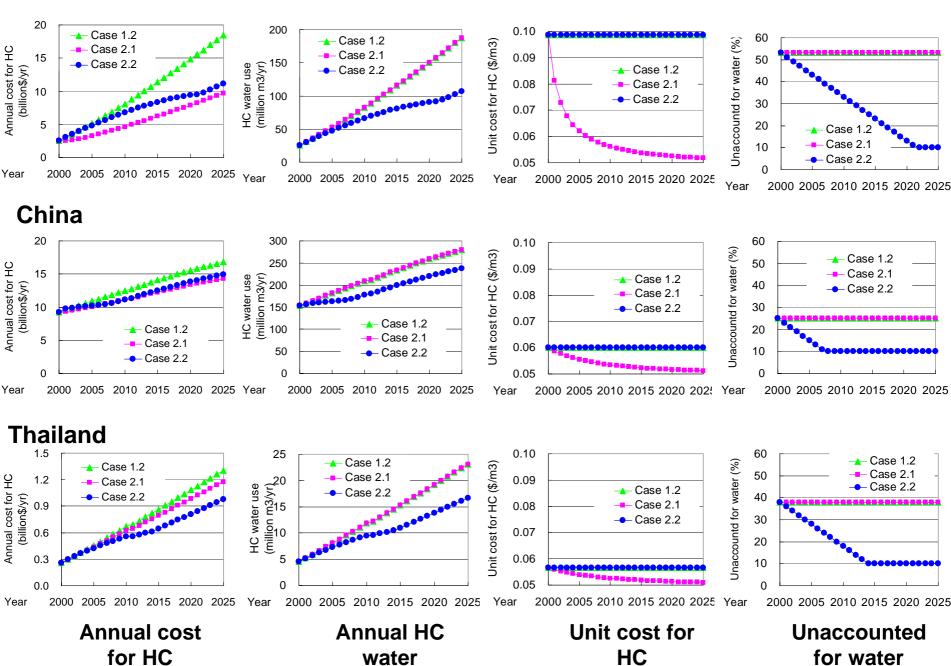
Household connection, Health impact


- Cost of Household connection (HC)
 - Total water use in HC = Residential water use
 - + Commercial water use + Unaccounted for water (UFW)
 - Unit cost: \$/m³ ►►► assess effectiveness of UFW reduction
- Health impacts: Potential risk of diarrhoeal mortality
 - Assessment of relative risk potential based on access to safe water supply and sanitation

Scenario	Water supply	Sanitation	Diarrhoeal Risk
S 1	НС	IS with SC	2.5
S2	IWS without HC	SC	4.5
S 3	IWS without HC	IS without SC	6.9
S4	NIWS	IS with SC	6.9
S 5	IWS with HC	NIS	8.7
S6	NIWS	NIS	11.0

Case 1

- Case 1: Focus on technology selection
 - Case 1.1
 Keep up present ratio of technologies until 2025
 - Case 1.2
 Provide household connection and sewer connection for all by 2025
 - Case 1.3


Provide cheap technologies (Well/Pond/Borehole and VIP/Simple pit latrine) for additional people who can access to improved water and sanitation

Case 2

- Case 2: Application of SDB for Case 1.2 (Provide household connection and sewer connection for all by 2025)
 - Efficiency of water supply management
 - Annual cost = Investment cost + O&M cost
 - O&M cost (C_t) = 10% of annual cost
 - Actual O&M = C_t/m_t , $m_t = 1-m^{0*}exp(1-\beta t)$
 - m⁰ is estimated by "Number of staff/connection"
 - Reduction of Unaccounted for water
 - Unit cost: 1% reduction ►►► 0.22\$/person/year
 - Minimum UFW ratio: 10%
 - Case 2.1: Improvement of water supply management ($\beta = 5\%$)
 - Case 2.2: Improvement of UFW (Reduction rate = 3%/yr)

India

Future task

- Domestic water use
 - ✓ Detailed data collection
 - ✓ Parameter evaluation
- Industrial water demand
- Agricultural water demand
- Water pollution
- Installation of water reuse system