The relationship between environmental load generation and demographic change

AIM International Workshop 2009 @NIES

National Institute for Environmental Studies
Researcher
Yuko KANAMORI

0. Introduction – Modeling a lifestyle-

- □ What is a key factor which have a influence on consumption behavior?
 - **■**Economic situation
 - □ How much money do you use for amusement?
 - Household composition/Age/Household size
 - □ Single-person household or Other household
 - □ With children or not
 - □ With aged person or not
 - □ Young couple or elderly couple
 - **■**Preference
 - □ International travel or reading at home
 - **■Policy**
 - **■**Technological change

1. Objective

□ To analyze a relationship between individual and household attributes and environmental load generation.

□ To estimate an impact on environmental load generation caused by demographic change (household composition change & population composition change).

2. Framework

Phase 2 Phase 1 Phase 3 Model development and estimation of **Analysis of future Analysis of** environmental load generation environmental characteristic about load generation environmental load Development of a generation **Development of** model for estimate demographic **Estimation** of environmental model load generation **Estimation of** Using individual **Estimation of Setting** population and environmental data of family scenarios household load generation **budget survey**

Analyze a relationship between individual and household attributes and environmental load generation

Estimate how to transit population and household composition

Estimate environmental load generation caused by demographic change

3. Outline of this study (1)

■Country: Japan ■Period: 1985-2050

■Environmental load:

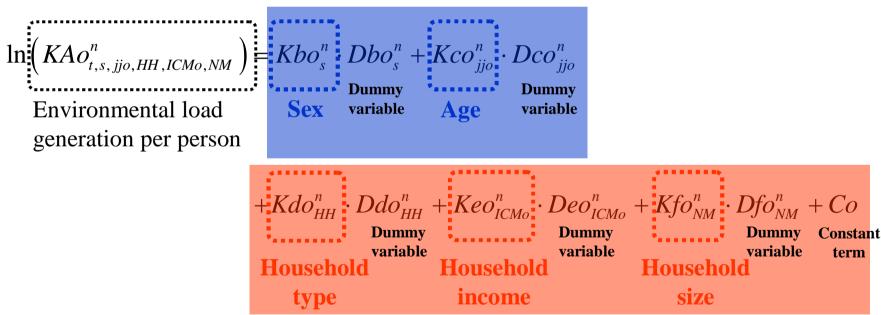
Household garbage	Paper	
	Plustic	
	Textiles	
	Glass/pottery	
	Metal	
	Wood/Plants	
	Kitchen garbage	
	Other	
Energy consumption	Electricity	
	City gas	
	LPG	
	Kerosene	
	Gasoline	
	Light oil	
Household effluent		
CO ₂ emission		

4. Outline of this study (2)

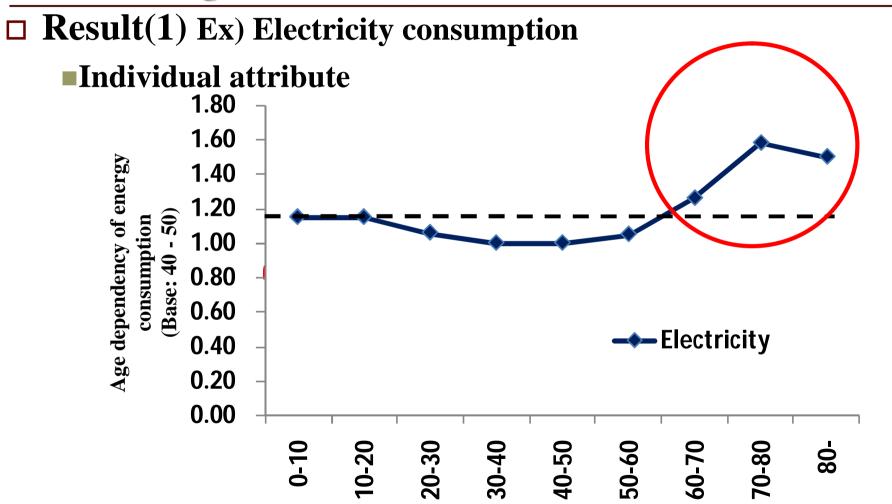
□ Data

- ■Individual data of family budget survey
 - ■Period: 1985 2004 (20years) monthly data
- Others
 - Annual report on the family income and expenditure survey
 - ■National survey of family income and expenditure
 - □ and so on...

□ Definition of terms

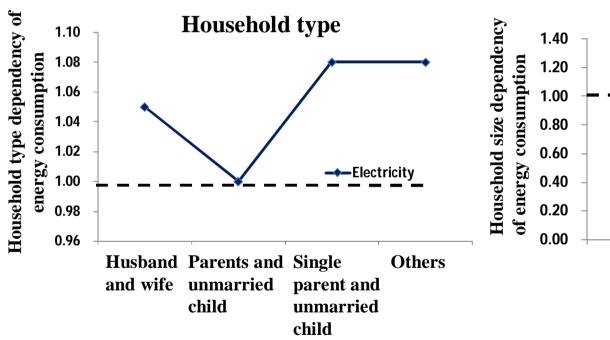

- ■Individual attributes are feature which characterize individual Ex)Year of birth, Age, and Sex
- ■Household attributes are feature which characterize household Ex)Household size, household type, and household income

5. Analysis of characteristic about environmental load generation (1)

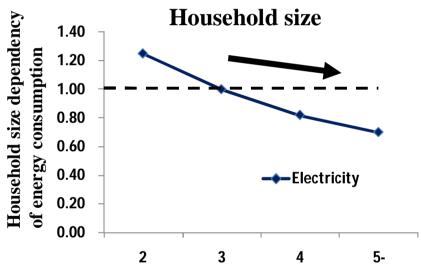

- 6. Analysis of characteristic about environmental load generation (2)
- □ Analyze characteristic about environmental load generation using multiple regression model

Household attribute

7. Analysis of characteristic about environmental load generation (3)



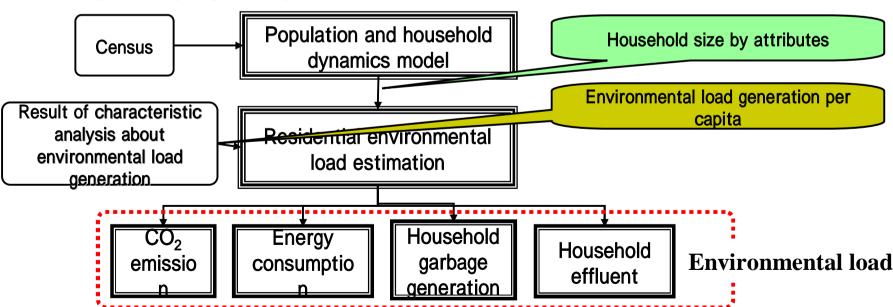
Old generations tend to consume much electricity


8. Analysis of characteristic about environmental load generation (4)

□ Result(2) Ex) Electricity consumption

■Household attribute

Household with parents and unmarried child tend to consume less electricity

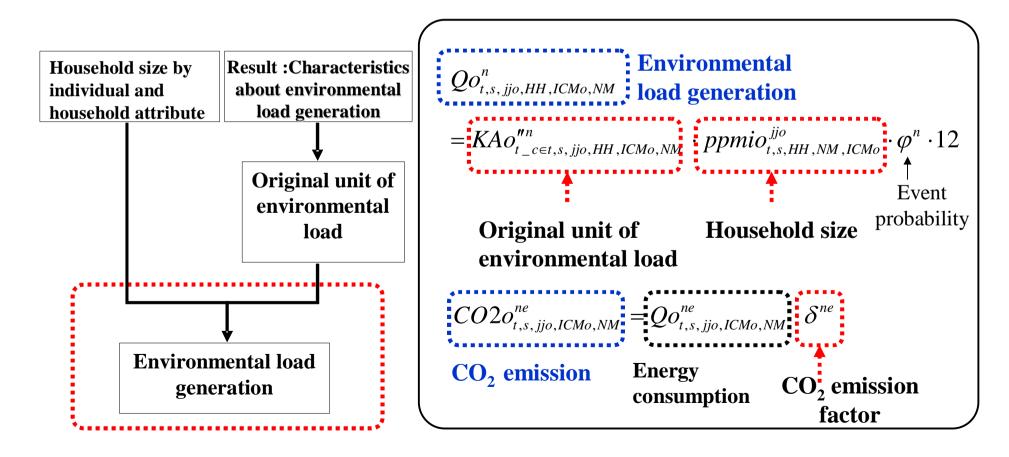


Larger the household size is, Less the electricity consume

9. Model development

- □ Outline
 - **■**Population and household dynamics model
 - **■**Residential environmental load estimation

□ Estimation flow



10. Population and household dynamics model

- ■Input: Base year population and 5 parameters
 - ■Rate of married
 - ■Rate of first marriage
 - **■**TFR
 - Mortality rate
 - ■Immigration rate
- **Output:** Population by age and household type
- ■Method: Model is based on Japan's official estimation method by National institute of population and security research

11. Residential environmental load estimation

- **■Bottom-up type**
- ■To estimate energy consumption, household garbage, Household effluent, CO₂ emission

12. Model verification (1)

□ Population and household dynamics model

■Population

			•
	Popuilation (10 ⁴ people)		e rro r
year	Reported	Estim a ted	01101
	va lue	va lue	(%)
1985	121101	12097	0.03
1990	12328	12383	0.44
1995	12544	12571	0.21
2000	12670	12670	0.00

■Household

	Household (10	0 ⁴ household)	ermor
year	Reported	Estim ated	CIIOI
	va lue	va lue	(%)
1985	3791	3849	1.50
1990	4067	4129	1.51
1995	4390	4300	2.09
2000	4659	4765	2.21

Population

Error is **less that 1%**

Household

Error is about 2%

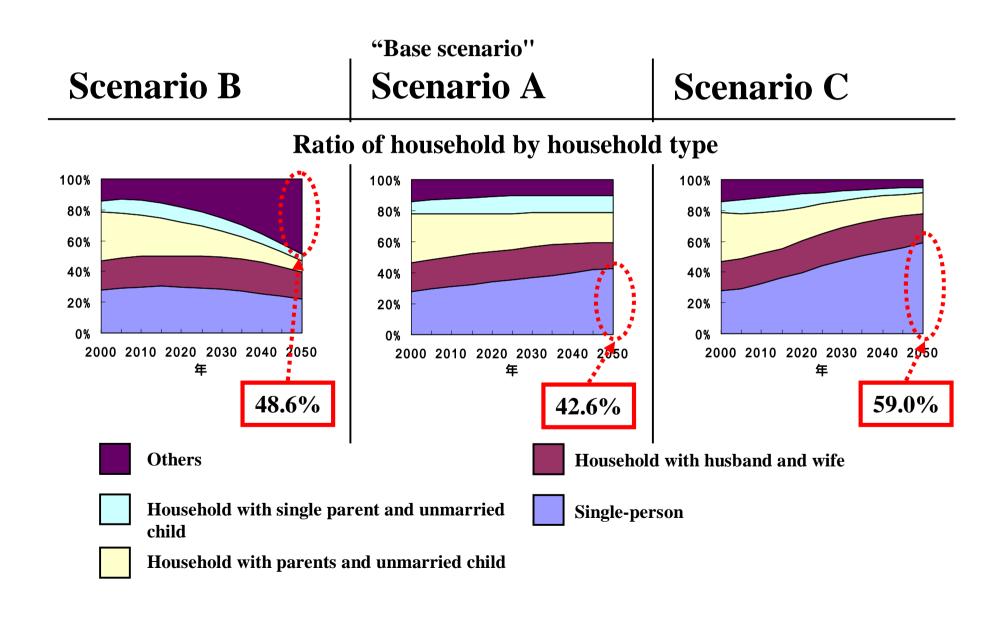
	Household (2000)		Error
Housheold type	Reported	Estimated	LIIOI
L	Value	va lue	(%)
Single person	13257	12911	2.60
Husband and wife	8837	8835	00.0
Parents and unmarried child	15171	14919	4 .66
Single parent and unmarried child	3657	3578	2.17
0 the rs	6724	6347	5 .60

13. Model verification(2)

□ Residential environmental load estimation

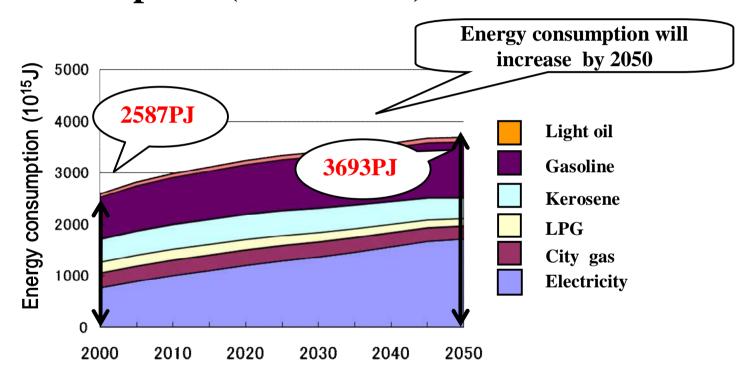
Environm ental bad		1985	2000
		R Æ	R Æ
	Kitchen garbage	0.78	0.78
	E lectricity	0.76	0.83
rgy p tion	C ity gas	0.77	0.62
Enenrgy consumptio	LPG	0.76	0 .85
	Kerosene	0.69	0.92
E On S	G aso line	0.77	0.82
S	Lightoil	0.75	0 .47
Housheold effluent		1.04	1.37
CO ₂ em ission		-	0 .86

R:Reported value


E: Estim a ted value

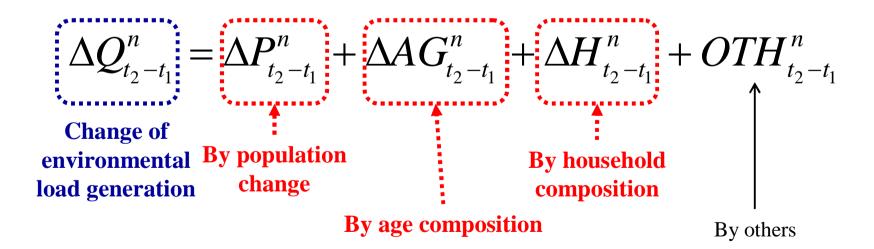
Comparison reported value and estimated value is almost **0.75-1.00**

14. Demographic scenario(1)

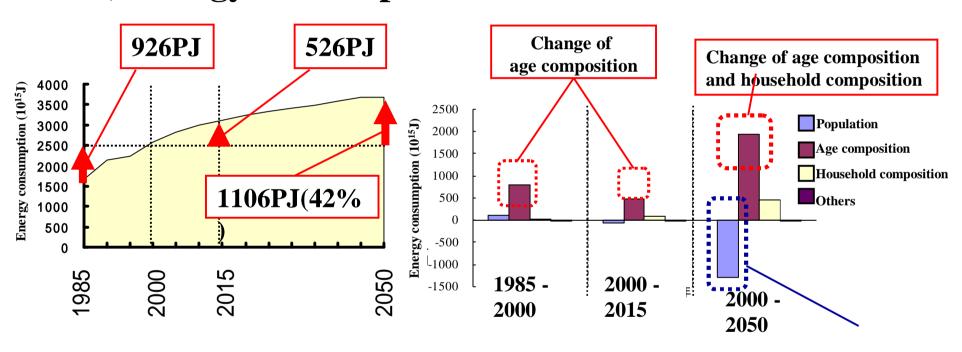

	Scenario B	Scenario A	Scenario C
TFR	1.54	1.26	1.06
	sehold composition nge to large family	Household composition change keep the current trend (Small family)	Household composition change to small family quickly (Increase the tendency of smaller family)
Population (million person	122.3	94.0	87.3
Household (million household)	35.3	44.2	51.1
Average household size	2.90 person/household	2.13 person/household	1.71 person/household

15. Demographic scenario(2)

16. Result(1) - Energy consumption in scenario A-


□ Energy consumption (Scenario A)

Energy consumption will be increasing, and reach to **3693PJ** in 2050. Especially, **electricity consumption** will be increasing drastically, and reach to 1716PJ in 2050 (2.2 times compared to 2000)


17. **Result(2)**

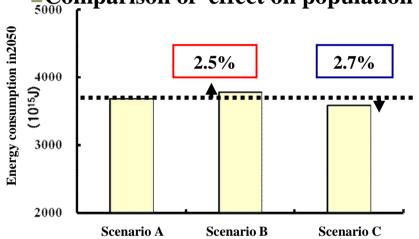
- **□** Factor analysis
 - ■3 factors
 - **Population**
 - **□**Age composition
 - **□**Household composition

18. Result(2) - Comparison between past and future

□ Ex) Energy consumption

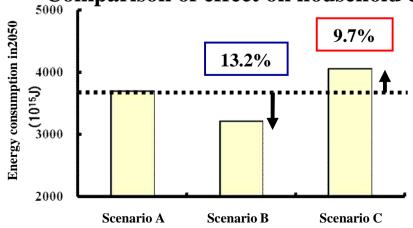
➤ 1985 - 2000: Change of age composition have an effect on energy consumption increase

>2000 - 2050: Change of age composition and household composition

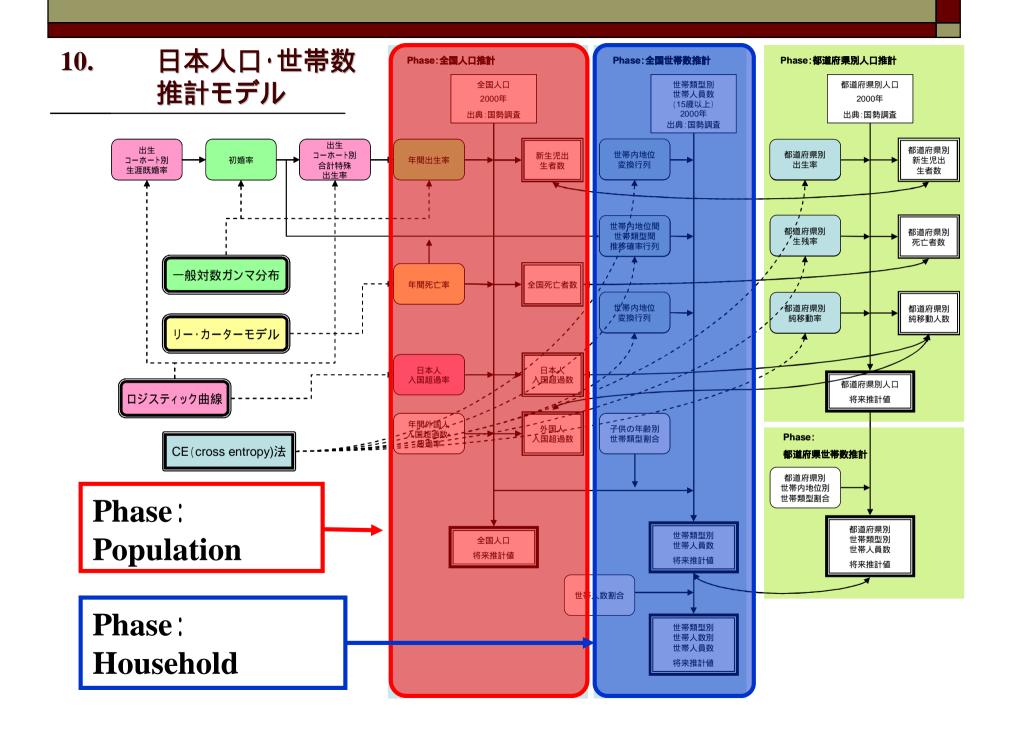

energy consumption increase

Population change energy consumption decrease

19. Result(3) - Comparison among scenarios -


□ Ex) Energy consumption

Comparison of effect on population change (Fix household transition)


- ➤ In scenario B, energy consumption is
- **2.5%(92 10¹⁵J) greater** than scenario A.
- ➤ In scenario C, energy consumption is
- 2.7%(99 10¹⁵J) less than scenario A.

Comparison of effect on household composition change(Fix population transition)

- ➤In scenario B, energy consumption is
- 13.2%(486 10¹⁵J) less than scenario A.
- ➤In scenario C, energy consumption is
- **9.7%**(**357 10**¹⁵**J**) **greater** than scenario A.

Thank you for your attention!

