15th AIM International Workshop 20th – 22th February, 2010 NIES, Tsukuba, JAPAN

Co-benefits of LCS policies and air pollution abatement.

Gakuji KURATA, Chie YANAGI Kyoto University

Contents

- (1) Improvement of the <u>downscaling method</u> of air pollutants emission. (Country level to 1km-mesh)
- (2) Implementation of Exposure Model, which can treat an indoor air pollution, in current model framework to estimate health impact.

Objective

To evaluate a Co-benefit of LCS policies and air pollution abatement quantitatively.

Background

- Co-benefit is one of the most important factors to implement LCS policies to the developing countries.
- Co-benefits with air pollution abatement is large.
- Air pollution abatement has high priority in developing countries.
- WHO (2000) estimate that indoor air pollution is responsible for 2.8 million deaths per year.
- This is much larger than that from outdoor air pollution.

(0.2 million deaths)

Model Framework presented at AIM WS, 2009

Downscaling method of air pollutant emission

Country-level Emission of Air Pollutants

[Anthropogenic]

- For preliminary calculation:
 Country-level emission from EDGAR Fast Track 3.2 (Olivier *et al.*, 2005)
 [CO₂ 、 CH₄ 、 N₂O 、 HFC 、 SF₆ 、 CO 、 NO_x 、 NMVOC 、 SO₂]
 [Biomass fuel, fossil fuel, industrial process, Agriculture]
- For Current Emission:
 - IEA, UN energy statistics
 - × Emission Factor (each Sector)
- For Current and Future Emission:

AIM/Enduse energy use and Technology share

Emission Factor (each Technology)

not yet implemented

Natural Source

- Volcano SO₂ (Miyake Island) ← Japanese Meteorological Agency
- ◆ Volcano SO₂ (Other volcano) ← Streets et al.(2003), GEIA etc
- ◆ Biogenic VOC and Soil NOx ← GEIA

Biomass Burning

• GICC biomass burning inventory (Estimated from Satellite data and Land cover data)

NOx emission $(30" \times 30")$

NOx emission $(30"\times30")$

Chemical Transport Model

WRF

(Weather and Forecasting Model)

- Meso-scale Meteorological Model developed by NCAR and Researchers community.
- WRF ARW(Advanced Research WRF) version 3.1.1
- Input Data
 - Terrain and Landuse data: USGS(U.S. Geological Survey)
 - Initial and Boundary Meteorological Data: JRA-25 (Re-Analysis by JMA)

CMAQ

(Community Multi-scale Air Quality Modeling System)

- Multi scale Chemical Transport Model developed by US EPA
- CMAQ version 4.7
- Input Data
 - Emission Mesh Data
- Chemical Reaction Mechanism
 - Gas Phase: CB05 (51 chemical Species, 156 Reactions)
 - Aerosol : AERO5

Exposure Model

- Developed an Exposure model considering micro environment
- Microenvironment in this study

Micro environment	Place	Source	Definition of Time Use
Α	House	Cooking	Cooking Time
В	House	Hot Water	Cooking Time
С	House	Heating	Staying time at home (Except sleeping)
D	House	Lighting	Staying time at home (Except sleeping)
E	Indoor	none	Staying time at Indoor
F	Outdoor	_	Staying time at Outdoor

Formulation for Ex	xposure calculation
--------------------	---------------------

$$\overline{E^a} = \sum_m C_m \cdot T_m^a$$

 $\overline{E^a}$: daily average exposure concentration for Cohort (a) (µg/m³)

 C_m : Pollution concentration in microenvironment (m)) (µg/m³)

 T_{m}^{a} : Staying time ratio at microenvironment (m) for Cohort (a) (--)

a : Cohort

Cohort	Sex	Age	occupation
1	Man	0	_
2	Man	1-4	_
3	Man	5-9	_
4	Man	15-24	Υ
5	Man 15−24		N
6	Man	25-34	Υ
7	Man	25-34	N
8	Man	35-64	Υ
9	Man	35-64	N
10	Man	65-	Υ
11	Man	65-	N
12	Woman	0	_
13	Woman	1-4	_
14	Woman	5-9	_
15	Woman	15-24	Υ
16	Woman	15-24	N
17	Woman	25-34	Υ
18	Woman	25-34	N
19	Woman	35-64	Υ
20	Woman	35-64	N
21	Woman	65-	Υ
22	Woman	65-	N

Input Data to Micro Environment and Exposure Model

Outdoor Pollutant concentration

- 1 day average from CMAQ Calculation. (80km x 80km)
 - → This may cause underestimate of the contribution of outdoor pollution.

Emission Factor

- Cooking and Heating by Gas, Liquid, Solid Fuel, Zhang et al.(2001)
- EF of Biomass (Wood, Charcoal, Crop residue, Dung)

Time use data

• Shimada (2010)···Made from time-budget survey of each country and Calibrated by Cross Entropy method

• Volume of Microenvironment

Average room size calculated by floor area and number of rooms of each country.

• Deposition rate, Penetration rate

from previous research.

Input Data to Exposure Model

- Energy consumption for household
 - Kanamori (2010)
 (each Household activity: Cooking, Heating, Hot water Supply, Lighting)
 (each Energy source: Coal, Oil, Natural Gag, Wood, Crop Residu
 For Heating.... Heating degree-day was used to estimate daily consumption.
- Air Exchange Rate
 - considering Heating degree-day and Existence of combustion source
- Heating degree-day
 - 10°C (daily average temperature)
 was used for threshold for heating

Micro Environment Model

- Single-Compartment Mass Balance Model under steady-state assumption
- Micro Environment A, B, C, D

$$C_m = \frac{Se}{\left(v + F_d\right)V}$$

Micro Environment E

$$C_m = \frac{F_p v}{v + F_d} C_o$$

Micro Environment F

$$C_m = C_o$$

Micro environment	Place	Source	Definition of Time Use
Α	House	Cooking	Cooking Time
В	House	Hot Water	Cooking Time
С	House	Heating	Staying time at home (Except sleeping)
D	House	Lighting	Staying time at home (Except sleeping)
Е	Indoor	none	Staying time at Indoor
F	Outdoor	_	Staying time at Outdoor

 C_m : Pollutant concentration at micro environment (m) (μ g/m³)

 C_o : Pollutant concentration at Outdoor ($\mu g/m^3$)

 F_p : Penetration Factor (-)

ν : Air Exchange Rate (1/hr)

 F_d : Deposition rate (1/hr)

S: Energy consumption (KJ/hr)

e : Emission Factor (μg/KJ)

V: Volume of Micro Environment(m³)

Micro Environment Model and Exposure Model

Target: Asian 24 countries

- Calculation Period
 - ♦ 1 Jan 2001
 - \sim 31 Dec 2001
- Time Step
 - ◆ 1 day
- ◆ <u>Target Pollutants</u>
 - **♦** PM_{2.5}
 - \bullet SO₂
 - \bullet NO_X
 - CO

Result (1) Chemical Transport Model

CMAQ vs. EANET Observation (2001)

at OKI Island (JAPAN) [Daily Average]

Result (Exposure Model) preliminary results

• Daily average exposure concentration of $PM_{2.5}$ for all grid, in winter and summer , Female age 35-64, non occupation.

Contribution of Heating is very high in Winter season.

Result (Exposure Model) (Country)

Contribution to Exposure from each microenvironment:

China Vietnam India Korea Thailand Indonesia Malaysia Singapore Japan

0%

F

F

Outdoor

Exposure and contribution of each indoor source to each Cohort preliminary results

Summary

- We developed the modeling framework to estimate the human exposure from both **indoor** and **outdoor** air pollution, using WRF, CMAQ and Exposure model.
- Concentration of PM_{2.5} was slightly underestimated at remote site. (Oki Island). However, seasonal trend was reproduced.
- We developed the Exposure Model including an indoor air quality and micro environment, and calculated exposure for 15 Asian countries and 22 Cohorts.
- Preliminary results show the large difference of the impact of air pollutants between Countries and Cohorts.
- Indoor air pollution from Cooking and Heating is very large, especially when they use a biomass fuel.
- We can incorporate this model within LCS scenario development process for household sector.

Thank you for your attention