The Development of Climate Change Impact Assessment Toolkit for Urban Policy Makers

Wei Ye

School of Science and Engineering University of Waikato, New Zealand

Objectives

An integrated impact assessment tool for urban policy makers to

GUIDE DECISION BY

- Combining analysis of climate and local impacts
- Developing "what if" scenarios to consider climate and disaster risk in macro decisions
- Proposing and evaluating costs and benefits of interventions by sector and across sectors

OBJECTIVES & GOALS

- Institution and capacity development
- Science-based policy making
- Regional cooperation
- Analysis of potential future mega projects
- Effective linking with disaster risk reduction

What is proposed

AN INTEGRATED ASSESSMENT TOOL WHICH IS

- Simple
- Flexible & utility oriented
- Easy to understand for urban policy makers
- Suited to evaluating the costs and benefits for abatement, adaptation, and risk reduction

A SYSTEMS APPROACH THAT

- Connects the various components of the urban system (economic, environmental, etc.)
- Captures interactions
 between components to
 improve environmental and
 human health, water
 security, and infrastructure

Figure 1. Schema of the main scenario elements and guidance material available from the IPCC Data Distribution Centre (DDC). Information above the dashed line comprises projections; below the line observations. For explanation, see text.

Figure 1. Schema of the main scenario elements and guidance material available from the IPCC Data Distribution Centre (DDC). Information above the dashed line comprises projections; below the line observations. For explanation, see text.

SimCLIM structure

SimCLIM demonstration

Community at risk

SimCLIM result

Coastal flooding impact model: Time-slice spatial analyses

50-YEAR EVENT

Current climate

Study area

2050

SimCLIM model

Economic tools

SIMULATE IMPACTS ...

- Over study area
- Over distribution of flood events
- With and without climate change
- With and without adaptation
- In time steps ("transient" mode)
 as climate changes
 as land use changes
- Aggregate and discount to present value

SimCLIM result

Scenarios of development and land use

Model rules and settings

Fractional change (per year) of land use type

SimCLIM result

Adaptation analysis

Simulated individually or in combination

SimCLIM model

Economic tools

- Dollar damages
- Basic Benefit-Cost Analysis

Classify and survey structures by: type (e.g. residential) age (e.g. <10 yrs) construction (e.g. woodframe)

x Indicativ = \$ Damage e \$ value

For example...

Single family, new, woodframe

x \$20k = \$10k Damage

SimCLIM result

Economic tools

SimCLIM result

Economic tools

DAMAGES

ADAPTATION BENEFITS & COSTS

Figure 1. Schema of the main scenario elements and guidance material available from the IPCC Data Distribution Centre (DDC). Information above the dashed line comprises projections: below the line observations. For explanation, see text.

Figure 1. Schema of the main scenario elements and guidance material available from the IPCC Data Distribution Centre (DDC). Information above the dashed line comprises projections; below the line observations. For explanation, see text.

Complex System

Training

- ✓ Technical
- ✓ Adaptation Planning
- ✓ Systems Approach
- ✓ Decision Making

Relationships

- ✓ IFI's
- ✓ City Govt.
- ✓ Provincial Govt.
- ✓ National Govt.
- ✓ NGO's
- ✓ Institutes

Communication

- ✓ Community of Practice
- ✓ Knowledge Sharing
- ✓ Media Strategy

Systems Approach

- ✓ Bringing it together
- ✓ Feedback Mechanisms
- ✓ Project Planning and reporting

Systems Thinking

Geophysical

- ✓ DEM
- √ hydrological network
- ✓ Soils
- √ geomorphology

Climate

- ✓ Observations
- ✓ GCM, RCM
- ✓ Projections
- ✓ Temperature
- ✓ Precipitation
- ✓ Sea level, storms.

Geospatial

- ✓ Ecology/Habitat Surveys
- Road network: Condition, surface category
- ✓ Water: system, type of material
- ✓ Energy: Services, system, location maintenance,
- Health: capacity, human resources.

Social & Economic

- ✓ Demographic census, projections, Housingquality materials, condition, etc
- ✓ Welfare & human development -income, distribution, poverty, education, human development, Production and investment, Metric area of housing, infrastructure, land value

Policy

- ✓ IPCC Guidelines
- ✓ Local & National Planning Laws
- National Comms.

Data & Information

Hydrology

Insurance

Economics

Social

Hydraulics

GIS

Sector
Themes, Tools
& Methods

Health

Transport

Investment

Carbon

Energy

Meteorology

Ecology

Optimization/DSS

Cross-Sector Linkage Tools

System Approach

- Build on existing concepts
- Conceptual structure before mathematical detail
- Easy with computer
- Intuitive graphical user interface
- Support modular modeling
- High-efficient simulation

- System dynamics is an approach to understanding the behavior of <u>complex systems</u> over time. It deals with internal feedback loops and time delays that affect the behavior of the entire system. <u>(MIT, System Dynamics in Education Project)</u>
- What makes using system dynamics different from other approaches to studying complex systems is the use of <u>feedback</u> loops and <u>stocks and flows</u>. These elements help describe how even seemingly simple systems display baffling <u>nonlinearity</u>.

Multi criteria decision making support

