Development and assessment tools for LCS policy systems

ABS

Action Breakdown Structure

ructure of Actional and programs

ADSM

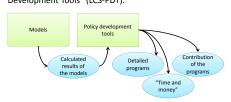
Design Str Matrix

Matrix of programs,

Limit of available

resources
Necessary resource
inputs for programs
Time needed for
decision making

BCT


Backcasting Tool

Schedule of programs

Objective

Despite a cumulative effort of modeling engineers and policy makers, still there is a gap between modeling and policy making for low-carbon society

The objective of this study is to propose a series of tools to fill the gap, namely "LCS Policy Development Tools" (LCS-PDT).

Overview of LCS-PDT

DCA

Contribution to

mission reductions

Contribution to

considering indirect effect

llocated to technica parameters

ARIPPLE

Action RIPPLE diagran

Action Breakdown Structure (ABS)

Hierarchical structure of LCS policies To organize a large number of programs

Direct contribution analysis (DCA)

Primary method to estimate contribution of policies to emission reduction

Action Design Structure Matrix (ADSM)

To show mutual relationship of emission reductions. technical parameters, programs and its measurements, and actors.

Action ripple diagram (ARIPPLE)

To calculate contribution of "entities" to the target Backcasting Tool (BCT)

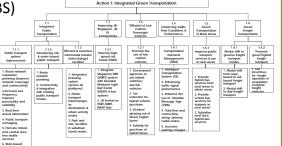
To project a roadmap of programs under constraints of time and input resources

Action Breakdown Structure (ABS)

An application of "work breakdown structure" used in project management

Hierarchical structure of LCS policies

Action: The largest group of policies. 5 to 12.


Sub-action

Program: Implementable activity

"MECE": Mutually exclusive and correctly exhaustive

Duplication must be avoided

It must cover all of the activities which should be implemented to achieve LCS goal

Direct mitigation Contribution Analysis (DCA)

Calculate contribution of policies based on parameter - policy correspondence Decomposition analysis in ExSS

Allocate the emission reduction to the related parameters

EE improvement, Fuel shift, Energy service reductions in each sector and in each services

Action design structure matrix (ADSM)

A matrix which shows relations and interactions among programs in ABS and crucial parameters/variables/ output measure which influence the quantified targets of LCSRs, with compact, easily scalable, and intuitively readable representation.

Domains

Actor/Stakeholder (AS)

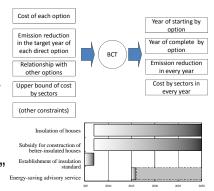
Program (PG)

Performance measure (PM)

"Entities": elements of the domains

Quantitative target (QT)

•Column elements act to row elements, i.e. column elements cause effects to row elements Elements of matrix denote relation between column elements


et.1

	AS1	AS2	PG1	PG2	PM1	PM2
AS1	1					
AS2		1				
PG1	0.5			0.5		
PG2		1				
PM1			1			
PM2				1		
QT					1	

Backcasting tool (BCT)

- Describes implementation of all related activities ("options")
- All options are fully implemented by the target year
- Considers direct cost of the sectors (government, industries, households, etc)
- Formulated as a mixed integer problem (programming language is GAMS)

"Roadmap"

Action ripple diagram (ARIPPLE)

Quantify contribution of one entity to another entity in DSM

Can be used to analyze contribution of

1) Program to targets

2) Actor to programs / targets in a consistent framework.

"output" x and "self-input" f

Output x: Input of resources, degree of implementation, the size of itself. Standardized to 0 - 1 in ARIPPLE

 ${\bf Self\ input}\ f\hbox{: output\ which\ is\ automatically\ realized}$ without effect of the other entities.

ARIPPLE calculates contribution of f_{ext} (self-input of entity et1) to x_{et} (output of entity et)

Linear function of the output (LIN)

$$x_{et} = \frac{p_{et} \cdot f_{et} + \sum_{et1 \in ET \cap et1 \times et} p_{et,et1} \cdot x_{et1}}{p_{et} + \sum_{et1} p_{et,et1}}$$

fer: Standardized self-input of entity en x_{ei} : Standardized output of entity et p_{ei} : Parameter for f_{ei} , diagonal element of ADSM $p_{et,et1}$: Parameter for x_{et} , element of ADSM

Non-linear function of the output(MUL)

$$x_{et} = f_{et} \frac{p_{et} + \sum_{et \mid eET \cap et \mid x_{et}} p_{et,et1} \cdot x_{et1}}{p_{et} + \sum_{et \mid eET \cap et \mid x_{et}} p_{et,et1}}$$

xet: Standardized output of entity et

 p_{et} : Parameter for f_{et} , diagonal element of ADSM

 $p_{et,etl}$: Parameter for x_{et} element of ADSM

(1)Define a and b from ADSM

$$a_{et,et1} = \frac{p_{et,et1}}{p_{et} + \sum_{et1 \in \text{ET} \cap et1 \neq et} p_{et,et1}}$$

$$b_{et} = \frac{p_{et}}{p_{et} + \sum_{et} p_{et,et1}}$$

 $a_{et,et}$: Standardized parameter ion influence between different entities x_{t1} : Standardized parameter for x_{et} . Relative $b_{\it er}$: Standardized parameter for $f_{\it er}$ Relative influence of self-input.

(2) solve for x (LIN)

$$\vec{x} = A \cdot \vec{x} + \vec{f} \cdot B$$

$$\vec{x} = [I - A]^{-1} \cdot B \cdot \vec{f}$$

$$IMP = [I - A]^{-1} \cdot B = \{imp_{et,et1}\}$$

 $B=\{\text{diagonal elements: } b_{\text{en}} \text{ the other elements: } 0\}$ *IMP*: Parameter matrix considering both $a_{et,et1}$ and b_{et}

(3)Contribution (LIN)

$$\left\{ x_{et} \right\} = \overrightarrow{x} = IMP \cdot \overrightarrow{f} = \left\{ \sum_{e \neq 1} imp_{et,et1} \cdot f_{et1} \right\}$$

$$IMP \cdot \overrightarrow{f} = imp_{et,et1} \cdot f_{et1}$$

Standardized relative contribution of et1 to et with a

(4)Contribution (MUL)

$$imp1_{et,et1} \cdot f_{et1} = l_{et,et1}^{(0.5)} \cdot b_{et1} \cdot f_{et1}$$

$$imp2_{_{et,et2,et1}} \cdot f_{_{et2}}^{\mathit{MUL}} \cdot f_{_{et1}}$$

$$= 0.5 \cdot b_{et1} \cdot \left(\sum_{et3} I_{et,et2}^{(1)} \cdot a_{et2,et3} \cdot I_{et3,et1}^{(0)} \right) \cdot f_{et2}^{MUL} \cdot f_{et1}$$

 $imp2_{et,et2,et1}$: Combined contribution of et1 and et2